Answer:
1340.2MW
Explanation:
Hi!
To solve this problem follow the steps below!
1 finds the maximum maximum power, using the hydraulic power equation which is the product of the flow rate by height by the specific weight of fluid
W=αhQ
α=specific weight for water =9.81KN/m^3
h=height=220m
Q=flow=690m^3/s
W=(690)(220)(9.81)=1489158Kw=1489.16MW
2. Taking into account that the generator has a 90% efficiency, Find the real power by multiplying the ideal power by the efficiency of the electric generator
Wr=(0.9)(1489.16MW)=1340.2MW
the maximum possible electric power output is 1340.2MW
Answer:

Explanation:
The word 'nun' for thickness, I will interpret in international units, that is, mm.
We will begin by defining the intensity factor for the steel through the relationship between the safety factor and the fracture resistance of the panel.
The equation is,

We know that
is 33Mpa*m^{0.5} and our Safety factor is 2,

Now we will need to find the average width of both the crack and the panel, these values are found by multiplying the measured values given by 1/2
<em>For the crack;</em>

<em>For the panel</em>

To find now the goemetry factor we need to use this equation

That allow us to determine the allowable nominal stress,


\sigma_{allow} = 208.15Mpa
So to get the force we need only to apply the equation of Force, where



That is the maximum tensile load before a catastrophic failure.
Answer:
0.0367
Explanation:
The loss in kinetic energy results into work done by friction.
Since kinetic energy is given by
KE=0.5mv^{2}
Work done by friction is given as
W= umgd
Where m is the mass of suitacase, v is velocity of the suitcase, g is acceleration due to gravity, d is perpendicular distance where force is applied and u is coefficient of kinetic friction.
Making u the subject of the formula then we deduce that

Substituting v with 1.2 m/s, d with 2m and taking g as 9.81 m/s2 then

Therefore, the coefficient of kinetic friction is approximately 0.0367
Very roughly 7,700 feet ... about 1.5 miles.
Answer:
31.1 N
Explanation:
m = mass attached to string = 0.50 kg
r = radius of the vertical circle = 2.0 m
v = speed of the mass at the highest point = 12 m/s
T = force of the string on the mass attached.
At the highest point, force equation is given as

Inserting the values

T = 31.1 N