For this problem we can use half-life formula and radioactive decay formula.
Half-life formula,
t1/2 = ln 2 / λ
where, t1/2 is half-life and λ is radioactive decay constant.
t1/2 = 8.04 days
Hence,
8.04 days = ln 2 / λ
λ = ln 2 / 8.04 days
Radioactive decay law,
Nt = No e∧(-λt)
where, Nt is amount of compound at t time, No is amount of compound at t = 0 time, t is time taken to decay and λ is radioactive decay constant.
Nt = ?
No = 1.53 mg
λ = ln 2 / 8.04 days = 0.693 / 8.04 days
t = 13.0 days
By substituting,
Nt = 1.53 mg e∧((-0.693/8.04 days) x 13.0 days))
Nt = 0.4989 mg = 0.0.499 mg
Hence, mass of remaining sample after 13.0 days = 0.499 mg
The answer is "e"
Answer:
The description is outlined in subsection downwards and according to the query given.
Explanation:
- Saponification seems to be a procedure that requires the conversion or transformation of fat, grease, or lipid by either the intervention of heating a mixture of aqueous alkali towards soap as well as an alcoholic. Soaps contain fatty acid salts, however, mono-fatty acids contain carbon atoms, such as sodium palmitate. Therefore, throughout the water, individuals were indeed soluble.
- However, on another hand, owing to large hydrocarbon strings, triglycerides do not partake in hydrogen bonding. Therefore in water, they aren't dissolved.
When acids react with water, H ions are released which then combine with water molecules to form H₃O⁺
Answer:
Two non bonded electron pairs and four bonded electron pairs
Explanation:
An image of the compound as obtained from chemlibretext is attached to this answer.
The ion ICl4- ion, is an AX4E2 ion. This implies that there are four bond pairs and two lone pairs of electrons. As expected, the shape of the ion is square planar since the lone pairs are found above and below the plane of the square. This is clear from the image attached.
Molality is the number of moles of solute in 1 kg of solvent
number of moles of sucrose - mass of sucrose / molar mass
number of moles of sucrose - 34.2 g / 342.34 g/mol = 0.0999 mol
number of moles in 125 g of water - 0.0999 mol
therefore number of moles in 1000 g - 0.0999 / 125 x 1000 = 0.799 mol/kg
molality of sucrose solution - 0.799 mol/kg