Answer:
The amount that should be in the account after 15 years is $95,321.85
Step-by-step explanation:
According to the given data, we have the following:
monthly amount of $220=R
interest rate is fixed at 2.05%. We require the monthly ineterest rate, hence monthly interest rate= 2.05%/12=0.1708%=0.0017
t=15years×12=180 months
In order to calculate how much should be in the account after 15 years, we would have to use the following formula:
Ap=<u>R(1-(1+i)∧-t)</u>
i
Ap=<u>220(1-(1+0.0017)∧-180)</u>
0.0017
Ap=<u>162,04</u>
0.0017
Ap=$95,321.85
The amount that should be in the account after 15 years is $95,321.85
<u />
Based on the given figure above, we can conclude that the triangle is an isosceles triangle. By definition, an isosceles triangle is a triangle that has at least two equal sides. Since this is an isosceles triangle, 8x-10 =6x. Now we can solve for x. So,
8x-10 =6x
8x-6x = 10
2x =10
x= 5.
Therefore, the value of x in the figure is 5. Hope this is the answer that you are looking for.
Answer:
25,722 yen
Step-by-step explanation:
300x85.74 is the simplest way to do this and I am just adding words to compete this
<span>The dimensions are 40 inches by 55 inches.
Explanation<span>:
We know that perimeter is the sum of all of the sides. Since this is rectangular, opposite sides are equal. This gives us
y+11/8y+y+11/8y=190.
Combining like terms, we have
2y+22/8y=190.
Writing 22/8 as a mixed number, we have
2y+2 3/4y=190
4 3/4y=190.
Divide both sides by 4 3/4:
(4 3/4y)</span></span>÷<span><span>(4 3/4)=190</span></span>÷<span><span>(4 3/4)
y=190</span></span>÷<span><span>(4 3/4).
Convert the mixed number to an improper fraction:
y=190</span></span>÷<span><span>(19/4).
To divide fractions, flip the second one and multiply:
y=190*(4/19)=760/19=40.
Since y=40, 11/8y=11/8(40)=440/8=55.</span></span>
Answer:
Step-by-step explanation:
The domain of a function is the set for which the function is defined. Our function is the function
. This function is defined regardless of the value of x, so it is defined for every real value of x. That is, it's domain is the set {x|x is a real number}.
The range of the function is the set of all possible values that the function might take, that is {y|y=6x-4}. Recall that every real number y could be written of the form y=6x-4 for a particular x. So the range of the function is the set {y|y is a real number}.
Note that as x gets bigger, the value of 6x-4 gets also bigger, then it doesn't approach any particular number. Note also that as x approaches - infinity, the value of 6x-4 approaches also - infinity. In this case, we don't have any horizontal asymptote. Since the function is defined for every real number, it doesn't have any vertical asymptote. Since h is a linear function, it cannot have any oblique asymptote, then h doesn't have any asymptote.