Okay, here is my stab at this, I hope it helps!
You know the bullet's initial velocity, V₀ = 450 m/s
You know the final velocity, V = 220 m/s
You also know how long the bullet accelerates (actually decelerates), 14cm, or .14 m
With this information, you learn that you need this equation.
V² = V₀² + 2a (x - x₀), because we have all the information except a, which is the acceleration. So putting it into the equation, it looks like this.
(220m/s)² = (450m/s)² +2a(.14m - 0m)
I'll let you solve the rest, but here are some hints. Your answer will be really big because the bullet slows down really quickly in a really small distance, and you answer will be negative, because this acceleration is causing the bullet to go slower, which is also called deceleration. Hope that helps!
Answer:
3311N
Explanation:
r = radius = 600m
V = speed = 150m/s
Mass = weight = 70kg
The weight of pilot when calculated due to circular motion
W = tv
Fv = mv²/r
Fv = 70x150²/600
Fv = 79x22500/600
= 15750000/600
= 2625N
Real Weight of the pilot = m x g
= 70 x 9.8
= 686N
The apparent Weight is calculated by
Mv²/r + mg
= 2625N + 686N
= 3311 N
Therefore the apparent Weight is 3311N
Answer:
Explanation:
Volume of block A = 10 x 6 x 1 = 60 cm³
Mass of block A = 630 g
density of mass A = mass / density
= 630 / 60 = 10.5g / cm³
Volume of block B = 5 x 5 x 3 = 75 cm³
Mass of block A = 604 g
density of mass A = mass / density
= 604 / 75 = 8.05 g / cm³
Since density of both A and B are less than that of mercury , both will float in mercury.
Answer:
Explanation:
the force of the rocket engine pushing it up, the force of gravity pulling it down, maybe some force of air resistance as the rocket goes fast, hmmm Free Body Diagrams (FBD) should have any and all forces on the model, unless they are negligible . or so slight they really make little difference in the total outcome.