answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
expeople1 [14]
2 years ago
8

A proton is confined in an infinite square well of width 10 fm. (The nuclear potential that binds protons and neutrons in the nu

cleus of an atom is often approximated by an infinite square well potential). Calculate the energy (in MeV) of the photon emitted when the proton undergoes a transition from the first excited state (n = 1) to the ground state (n = 1). In what region of the electromagnetic spectrum does this wavelength belong?
Physics
1 answer:
kvasek [131]2 years ago
8 0

Answer:

First Question

    E   =   1.065*10^{-12} \  J

Second  Question

   The  wavelength is for an X-ray  

Explanation:

From the question we are told that

     The  width of the wall is  w =  10\ fm =  10*10^{-15 }\ m

     The  first excited state is  n_1  =  2

     The  ground state is   n_0 = 1

Gnerally the  energy (in MeV) of the photon emitted when the proton undergoes a transition is mathematically represented as

          E   =   \frac{h^2 }{ 8 * m  *  l^2 [ n_1^2 - n_0 ^2 ] }

Here  h is the Planck's constant with value  h =  6.62607015 * 10^{-34} J \cdot s

         m is the mass of proton with value m  = 1.67 * 10^{-27} \   kg

So    

          E  =   \frac{( 6.626*10^{-34})^2 }{ 8 * (1.67 *10^{-27})  *  (10 *10^{-15})^2 [ 2^2 - 1 ^2 ] }

=>        E   =   1.065*10^{-12} \  J

Generally the energy of the photon emitted is also mathematically represented as

             E  =  \frac{h * c }{ \lambda }

=>          \lambda  =  \frac{h * c }{E }

=>          \lambda  =  \frac{6.62607015 * 10^{-34} * 3.0 *10^{8} }{ 1.065 *10^{-15 } }

=>         \lambda  =  1.87*10^{-10} \  m

Generally the range of wavelength of X-ray is  10^{-8} \to  1)^{-12}

So this wavelength is for an X-ray.

     

You might be interested in
Does a fish appear closer or farther from a person wearing swim goggles with an air pocket in front of their eyes than the fish
Sunny_sXe [5.5K]

Answer:

In this case, the index of seawater replacement is 1.33, the index of refraction of air is 1, which is why the angle of replacement is less than the incident angle, so the fish seems to be closer

In the opposite case, when the fish looked at the face of the man, the angle of greater reason why it seems to be further away

Explanation:

This exercise can be analyzed with the law of refraction that establishes that a ray of light when passing from one medium to another with a different index makes it deviate from its path,

      n₁ sin θ₁ = n₂ sin θ₂

where n₁ and n₂ are the refractive indices of the incident and refracted means and the angles are also for these two means.

In this case, the index of seawater replacement is 1.33, the index of refraction of air is 1, which is why the angle of replacement is less than the incident angle, so the fish seems to be closer

1 sin θ₁ = 1.33 sin θ₂

        θ₂ = sin⁻¹ ( 1/1.33 sin θ₁)

In the opposite case, when the fish looked at the face of the man, the angle of greater reason why it seems to be further away

4 0
2 years ago
If a 110 kg go-cart traveling at a velocity of 13.41 m/s has a collision with an impulse of 615 Nxs, what is the
mafiozo [28]

Answer:

5.59 m/s

Explanation:

We are given;

Mass = 110 kg

Initial velocity: u = 13.41 m/s

Force = 615 N

Time(t) = 1 s

Now, the formula for force is;

Force = mass x acceleration

Thus;

615 = 110 × acceleration

\Acceleration(a) = 615/110 = 5.591 m/s²

Now, using Newton's first law of motion, we can find acceleration (a). Thus;

v = u + at

v = 13.41 + (5.591 × 1)

v ≈ 19 m/s

So,the change in velocity is;

Final velocity(v) - Initial velocity(u) = 19 - 13.41 = 5.59 m/s

6 0
2 years ago
Inna Hurry is traveling at 6.8 m/s, when she realizes she is late for an appointment. She accelerates at 4.5 m/s^2 for 3.2 s. Wh
Alborosie

Answer:

1) v = 21.2 m/s

2) S = 63.33 m

3) s = 61.257 m

4) Deceleration, a = -4.32 m/s²

Explanation:

1) Given,

The initial velocity of Inna, u = 6.8 m/s

The acceleration of Inna, a = 4.5 m/s²

The time of travel, t = 3.2 s

Using the first equation of motion, the final velocity is

                v = u + at

                   = 6.8 + 4.5 x 3.2

                   = 21.2 m/s

The final velocity of Inna is, v = 21.2 m/s

2) Given,

The initial velocity of Lisa, u = 12 m/s

The final velocity of Lisa, v = 26 m/s

The acceleration of Lisa, a = 4.2 m/s²

Using the III equations of motion, the displacement is

                          v² = u² +2aS

                         S = (v² - u²) / 2a

                            = (26² -12²) / 2 x 4.2

                            = 63.33 m

The distance Lisa traveled, S = 63.33 m

3) Given,

The initial velocity of Ed, u = 38.2 m/s

The deceleration of Ed, d = - 8.6 m/s²

The time of travel, t = 2.1 s

Using the II equations of motion, the displacement is

                        s = ut + 1/2 at²

                           =38.2 x 2.1 + 0.5 x(-8.6) x 2.1²

                           = 61.257 m

Therefore, the distance traveled by Ed, s = 61.257 m

4) Given,

The initial velocity of the car, u = 24.2 m/s

The final velocity of the car, v = 11.9 m/s

The time taken by the car is, t = 2.85 s

Using the first equations of motion,

                         v = u + at

∴                        a = (v - u) / t

                            = (11.9 - 24.2) / 2.85

                            = -4.32 m/s²

Hence, the deceleration of the car, a = = -4.32 m/s²

5 0
2 years ago
Read 2 more answers
A truck pulled a car of 2,350 kg a distance of 25 meters. If the car accelerates from 3 m/s to 6 m/s, whats the average force ex
faust18 [17]

Answer:

1,269 N

Explanation:

4 0
2 years ago
A figure skater rotating at 5.00 rad/s with arms extended has a moment of inertia of 2.25 kg·m2. If the arms are pulled in so t
Serggg [28]

a) 6.25 rad/s

The law of conservation of angular momentum states that the angular momentum must be conserved.

The angular momentum is given by:

L=I\omega

where

I is the moment of inertia

\omega is the angular speed

Since the angular momentum must be conserved, we can write

L_1 = L_2\\I_1 \omega_1 = I_2 \omega_2

where we have

I_1 = 2.25 kg m^2 is the initial moment of inertia

\omega_1 = 5.00 rad/s is the initial angular speed

I_2 = 2.25 kg m^2 is the final moment of inertia

\omega_2 is the final angular speed

Solving for \omega_2, we find

\omega_2 = \frac{I_1 \omega_1}{I_2}=\frac{(2.25 kg m^2)(5.00 rad/s)}{1.80 kg m^2}=6.25 rad/s

b) 28.1 J and 35.2 J

The rotational kinetic energy is given by

K=\frac{1}{2}I\omega^2

where

I is the moment of inertia

\omega is the angular speed

Applying the formula, we have:

- Initial kinetic energy:

K=\frac{1}{2}(2.25 kg m^2)(5.00 rad/s)^2=28.1 J

- Final kinetic energy:

K=\frac{1}{2}(1.80 kg m^2)(6.25 rad/s)^2=35.2 J

7 0
2 years ago
Other questions:
  • A 1938 nickel has a diameter of 21.21 mm, a thickness of 1.95 mm, and weighs 0.04905 N. What is its density?
    13·1 answer
  • A 1.0 kg brick falls off a ledge of height 44m and lands on the ground at 3.0 s later.
    6·1 answer
  • Karen is running forward at a speed of 9 m/s. She tosses her sweaty headband backward at a speed of 20 m/s. The speed of the hea
    12·2 answers
  • Complete the sentence with the word "element" or "compound." O is a(n) and H2O2 is a(n) .
    11·2 answers
  • somewhere between the earth and the moon is a point where the gravitational attraction of the earth is canceled by the gravitati
    14·1 answer
  • Sophia is planning on going down an 8-m water slide. Her weight is 50 N. She knows that she has gravitational potential energy (
    9·1 answer
  • A 50 kg rocket generates 990 N of thrust. What will be its acceleration if it is launched straight up?
    13·1 answer
  • Three +3.0-μC point charges are at the three corners of a square of side 0.50 m. The last corner is occupied by a −3.0-μC charge
    12·1 answer
  • The heaviest wild lion ever measured had a mass of 313 kg. Suppose this lion is walking by a lake when it sees an empty boat flo
    12·1 answer
  • A truck drives to a rock quarry at a speed of 20 m/s. The truck takes on a load of rocks, which doubles its mass, and leaves at
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!