Answer:
b = 0.6487 kg / s
Explanation:
In an oscillatory motion, friction is proportional to speed,
fr = - b v
where b is the coefficient of friction
when solving the equation the angular velocity has the form
w² = k / m - (b / 2m)²
In this exercise we are given the angular velocity w = 1Hz, the mass of the body m = 0.1 kg, and the spring constant k = 5 N / m. Therefore we can disperse the coefficient of friction
let's call
w₀² = k / m
w² = w₀² - b² / 4m²
b² = (w₀² -w²) 4 m²
Let's find the angular velocities
w₀² = 5 / 0.1
w₀² = 50
w = 2π f
w = 2π 1
w = 6.2832 rad / s
we subtitute
b² = (50 - 6.2832²) 4 0.1²
b = √ 0.42086
b = 0.6487 kg / s
O is an element (Oxygen) and H2O2 is a compound (Hydrogen Peroxide)
Answer:
T= 224.01 N
Explanation:
in imminent motion we have to :
- The frictional force reaches its maximum value
- The system is in balance of forces
Data
W= 500 N : weight of the log
μs = 0.5
μk = 0.35
α = 30°above the ground : angle of the cable attached to the log
Newton's first law to the log:
∑F =0 Formula (1)
∑F : algebraic sum of the forces in Newton (N)
Forces acting on the log
T: cable tension for impending movement
N: normal force
W : weight
f: frictional force , f= μsN
We apply the formula (1)
∑Fx=0
Tx-f = 0
Tcosα-μsN=0
Tcos30°-0.5N=0 Equation (1)
∑Fy=0
N+Ty-W=0
N+Tsin30°-500=0
N= 500-Tsin30° Equation (2)
We replace the value of N of the Equation (2) in the equation (1)
Tcos30°-0.5(500-Tsin30°) = 0
Tcos30°+0.5Tsin30° = 0.5*500
T( cos30°+0.5*sin30°) = 250
(1.116) T = 250
T= 250/1.116
T= 224.01 N
Answer:
R=19.5m
= 4.65° S of W
Explanation:
Refer the attached fig.
displacement of the x and y components
x-component displacement is (
) = 
= A
(20°) + B
(40°)
= -12.0
(20°) + 20.0
(40°)
= -19.425m
x-component displacement is (
) = 
= A
(20°) - B
(40°)
= 12.0
(20°) - 20.0
(40°)
= -1.579
resultant displacement
∴
R = 
=
=19.5m
= 
= 
= 4.65° S of W