160,000 - 40,000= 120,000/4 = 3 sets of new tires in the first year and 4 every consecutive year.
*Given
3(x+y)=y
y is not equal to zero
*Solution
1. The given equation is 3(x+y) = y and we are tasked to find the ratio between x and y. Distributing 3 to the terms in the parenthesis,
3(x+y) = y
3x + 3y = y
Transposing 3y to the right side OR subtracting 3y from both the left-hand side and the right-hand side of the equation would give
3x = -2y
Dividing both sides of the equation by 3,
x = (-2/3)y
Dividing both sides of the equation by y,
x/y = -2/3
Therefore, the ratio x/y has a value of -2/3 provided that y is not equal to zero.
Answer:
a. z = 2.00
Step-by-step explanation:
Hello!
The study variable is "Points per game of a high school team"
The hypothesis is that the average score per game is greater than before, so the parameter to test is the population mean (μ)
The hypothesis is:
H₀: μ ≤ 99
H₁: μ > 99
α: 0.01
There is no information about the variable distribution, I'll apply the Central Limit Theorem and approximate the sample mean (X[bar]) to normal since whether you use a Z or t-test, you need your variable to be at least approximately normal. Considering the sample size (n=36) I'd rather use a Z-test than a t-test.
The statistic value under the null hypothesis is:
Z= X[bar] - μ = 101 - 99 = 2
σ/√n 6/√36
I don't have σ, but since this is an approximation I can use the value of S instead.
I hope it helps!
Evaluate 4-0.25g+0.5h4−0.25g+0.5h4, minus, 0, point, 25, g, plus, 0, point, 5, h when g=10g=10g, equals, 10 and h=5h=5h, equals,
Readme [11.4K]
I believe the correct given equation is in the form of:
4 – 0.25 g + 0.5 h
Now we are to evaluate the equation with the given values:
g = 10 and h = 5
What this actually means is that to evaluate simply means
to calculate for the value of the equation by plugging in the values of the
variables. Therefore:
4 – 0.25 g + 0.5 h = 4 – 0.25 (10) + 0.5 (5)
4 – 0.25 g + 0.5 h = 4 – 2.5 + 2.5
4 – 0.25 g + 0.5 h = 4
Therefore the value of the equation is:
4
Two figures are similar if one is the scaled version of the other.
This is always the case for circles, because their geometry is fixed, and you can't modify it in anyway, otherwise it wouldn't be a circle anymore.
To be more precise, you only need two steps to prove that every two circles are similar:
- Translate one of the two circles so that they have the same center
- Scale the inner circle (for example) unit it has the same radius of the outer one. You can obviously shrink the outer one as well
Now the two circles have the same center and the same radius, and thus they are the same. We just proved that any two circles can be reduced to be the same circle using only translations and scaling, which generate similar shapes.
Recapping, we have:
- Start with circle X and radius r
- Translate it so that it has the same center as circle Y. This new circle, say X', is similar to the first one, because you only translated it.
- Scale the radius of circle X' until it becomes
. This new circle, say X'', is similar to X' because you only scaled it
So, we passed from X to X' to X'', and they are all similar to each other, and in the end we have X''=Y, which ends the proof.