We actually don't need to know how far he/she is standing from the net, as we know that the ball reaches its maximum height (vertex) at the net. At the vertex, it's vertical velocity is 0, since it has stopped moving up and is about to come back down, and its displacement is 0.33m. So we use v² = u² + 2as (neat trick I discovered just then for typing the squared sign: hold down alt and type 0178 on ur numpad wtih numlock on!!!) ANYWAY....... We apply v² = u² + 2as in the y direction only. Ignore x direction.
IN Y DIRECTION: v² = u² + 2as 0 = u² - 2gh u = √(2gh) (Sub in values at the very end)
So that will be the velocity in the y direction only. But we're given the angle at which the ball is hit (3° to the horizontal). So to find the velocity (sum of the velocity in x and y direction on impact) we can use: sin 3° = opposite/hypotenuse = (velocity in y direction only) / (velocity) So rearranging, velocity = (velocity in y direction only) / sin 3° = √(2gh)/sin 3° = (√(2 x 9.8 x 0.33)) / sin 3° = 49 m/s at 3° to the horizontal (2 sig figs)
<h2>For Second Solid Lumped System is Applicabe</h2>
Explanation:
Considering heat transfer between two identical hot solid bodies and their environments -
- If the first solid is dropped in a large container filled with water, while the second one is allowed to cool naturally in the air than for second solid, the lumped system analysis more likely to be applicable
- The reason is that a lumped system analysis is more likely to be applicable in the air than in water as the convection heat transfer coefficient so that the Biot number is less than or equal to 0.1 that is much smaller in air
Biot number = the ratio of conduction resistance within the body to convection resistance at the surface of the body
∴ For a lumped system analysis Biot number should be less than 0.1
Answer:
, 
Explanation:
The jet is flying at constant velocity: this means that its acceleration is zero, so the net force acting on the jet is also zero.
Therefore, we can write:

where
is the thrust force generated by each engine of the jet
is the drag force
Solving for Fd,

The velocity of the jet is

So, the rate at which the drag force does work (which is the power) is

and substituting

we find

Converting into horsepower,

Answer:
Energy resources can be measured. They will include the fossil fuels, geothermal and hydroelectric potential, and increasingly the renewable resources. When the US list is compared to the World it is considered energy Rich. When Japan's list is compared to the world standard it considered energy poor.
A changing technology like nuclear fusion could substantially change the assessment.
Japan does not have any substantial, oil, coal, gas, deposits, while the US does.
Explanation:
Answer: -2.5
Explanation:
1/2(-5)= -2.5
-2.5(1)= -2.5
Got it right in Khan Academy. You’re welcome.