D) Heat, because friction produces heat, not light, gravitational or chemical. hope this helps! : )
Assuming that this gas is in ideal state, we can use the relation that for every 1 mol of an ideal gas it would have a volume of 22.4 L. But before using this, relation we need to convert the number of grams of H2 into moles by using the molar mass of 2.02 g/mol.
moles H2 = 0.00922 g ( 1 mol / 2.02 g ) = 0.005 mol H2
Volume H2 at STP = 0.005 mol H2 ( 22.4 L / 1 mol ) = 0.102 L of H2
Answer:
Yes we can find the initial velocity of car without finding acceleration.
u = 10 m/s.
Explanation:
Given that
s=20 m
Car takes 4 s to come in rest.
We know that when acceleration is constant then we can apply motion equation
----------1
------2
From equation 1 and 2

So we can say that

Given that the velocity of car at final condition will be zero (v=0)


From the above equation we can find the initial velocity of car without finding the acceleration

u = 10 m/s
Answer:
When the blood and the dialysate are flowing in the same direction, as the the dialysate and the blood move away from the region of higher concentration of the urea, to a region distant from the source, the concentration of urea in the blood stream and in the dialysis reach equilibrium and diffusion across the semipermeable membrane stops within the higher filter regions such as II, III, IV or V
However, for counter current flow, as the concentration of the urea in the blood stream becomes increasingly lesser the, it encounters increasingly unadulterated dialysate coming from the dialysate source, such that diffusion takes place in all regions of the filter
Explanation:
Answer:
d ≈ 7,6 g/cm³
Explanation:
d = m/V = 40g/5,27cm³ ≈ 7,6 g/cm³
V = l³ = (1.74cm)³ ≈ 5,27 cm³