Answer:
Given:
Body mass index values:
17.7
29.4
19.2
27.5
33.5
25.6
22.1
44.9
26.5
18.3
22.4
32.4
24.9
28.6
37.7
26.1
21.8
21.2
30.7
21.4
Constructing a frequency distribution beginning with a lower class limit of 15.0 and use a class width of 6.0.
we have:
Body Mass Index____ Frequency
15.0 - 20.9__________3( values of 17.7, 18.3, & 19.2 are within this range)
21.0 to 26.9__________8 values are within this range)
27.0 - 32.9____________ 5 values
33.0 - 38.9____________ 2 values
39.0 - 44.9 _____________2 values
The frequency distribution is not a normal distribution. Here, although the frequencies start from the lowest, increases afterwards and then a decrease is recorded again, it is not normally distributed because it is not symmetric.
------- (EF)
------ (FG)
------ + ------- =
6 + 7 =
13
Answer:
n = 17
Step-by-step explanation:
Assuming
- probability of success (making free throw) does not vary
We have
n = 17 (trials)
p = 0.479
x > 9
Answer:
m∠SRV = 48°
Step-by-step explanation:
In the parallelogram attached,
m∠TUV = 78°
m∠TVU = 54°
By applying the property of the angles of a triangle in ΔTVU,
m∠TUV + m∠TVU + m∠UTV = 180°
78° + 54° + m∠UTV = 180°
m∠UTV = 180° - 132°
= 48°
Sides RS and TU are the parallel sides of the parallelogram and diagonal TR is a transverse.
Therefore, ∠UTV ≅ ∠SRV [Alternate interior angles]
m∠UTV = m∠SRV = 48°