PH is calculated using <span>Handerson- Hasselbalch equation,
pH = pKa + log [conjugate base] / [acid]
Conjugate Base = Acetate (CH</span>₃COO⁻)
Acid = Acetic acid (CH₃COOH)
So,
pH = pKa + log [acetate] / [acetic acid]
We are having conc. of acid and acetate but missing with pKa,
pKa is calculated as,
pKa = -log Ka
Putting value of Ka,
pKa = -log 1.76 × 10⁻⁵
pKa = 4.75
Now,
Putting all values in eq. 1,
pH = 4.75 + log [0.172] / [0.818]
pH = 4.072
The warmer road surface at the end of a sunny day is the black road because during the day it absorbed more radiation (sunlight) than the withe one
Answer:
0.12 mol KCl
Explanation:
2 KClO3 (s) 2 KCl (s) + 3 O2 (g)
15 g x mol
x g KCl = 15 g KClO3 x[ (1 mol KClO3)/ (122.5 g KClO3) ] x [(2 mol KCl)/ (2 mol KClO3)]
x g KCl = 0.12 mol KCl
Explanation: Electron dot structures are the lewis dot structures which represent the number of valence electrons around an atom in a molecule.
The electronic configuration of potassium is ![[Ar]4s^1](https://tex.z-dn.net/?f=%5BAr%5D4s%5E1)
Valence electrons of potassium are 1.
The electronic configuration of Bromine is ![[Ar]4s^24p^5](https://tex.z-dn.net/?f=%5BAr%5D4s%5E24p%5E5)
Valence electrons of bromine are 7.
These two elements form ionic compound.
Ionic compound is defined as the compound which is formed from the complete transfer of electrons from one element to another element.
Here, one electron is released by potassium which is accepted by bromine element. In this process, Potassium becomes cation having +1 charge and Bromine become anion having (-1) charge.
The ionic equation follows:

The electron dot structure is provided in the image below.