Mass of metal piece is 611 g and volume of graduated cylinder is 25.1 mL. When metal piece is placed in the graduated cylinder water level increases to 56.7 mL. The increase in volume is due to volume of metal piece that gets added to the volume of water.
Thus, volume of metal piece can be calculated by subtracting initial volume from the final one.

Thus, volume of metal piece will be 31.6 mL. The mass of metal piece is given 611 g, density of metal can be calculated as follows:

Therefore, density of metal is 19.33 g/mL.
Answer:
Every single celled organism is able to survive because it carries out metabolic activities.
Metabolic activity is a set of chemical reactions which are needed for an organism to maintain it's life
Explanation:
the various types of metabolic processes keep an organism alive. There are various types of metabolic processes that takes place in the body of living organism.
These are cellular respiration, reproduction, excretion, digestion et cetera. Every living cell has these processes going on in their body to keep them alive.
Living organism need energy to carry out these processes which they get by eating food.
Read more on Brainly.com - brainly.com/question/12186942#readmore
<span> Mg(OH)2(s) + 2HCl(aq) yield MgCl2(aq) + 2H2O(l)
grams HCl required = (50.6 grams Mg(OH)2) * (1 mol Mg(OH)2 / 58.3197 grams Mg(OH)2) * (2 mol HCl / 1 mol Mg(OH)2) * (36.453 grams HCl / 1 mol HCl) = 63.26 grams HCl required
Since there are only 45.0 grams HCl, then HCl is the limiting reactant.
theoretical yield MgCl2 = (45.0 grams HCl) * (1 mol HCl / 36.453 grams HCl) * (1 mol MgCl2 / 2 mol HCl) * (95.211 grams MgCl2 / 1 mol MgCl2) = 58.6 grams MgCl2 </span>
The answer is C. It bans the exploitation of mineral resources
Answer:
0.019 moles of M2CO3
Explanation:
M2CO3(aq) + BaCl2 (aq) --> 2MCl (aq) + BaCO3(s)
From the equation above;
1 mol of M2CO3 reacts to produce 1 mol of BaCO3
Mass of BaCO3 formed = 3.7g
Molar mass of BaCO3 = 197.34g/mol
Number of moles = Mass / Molar mass = 3.7 / 197.34 = 0.0187 ≈ 0.019mol
Since 1 mol of M2CO3 reacts with 1 mol of BaCO3,
1 = 1
x = 0.019
x = 0.019 moles of M2CO3