answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ksenya-84 [330]
1 year ago
5

Arrange the following substances from the lightest to the heaviest:

Physics
1 answer:
storchak [24]1 year ago
6 0

molecular weights are written in the picture.

CH4<NH3<H2O<Cl2

You might be interested in
A target in a shooting gallery consists of a vertical square wooden board, 0.250 m on a side and with mass 0.750 kg, that pivots
Alenkasestr [34]

Here in this case since there is no torque about the hinge axis for the system of bullet and block then we can say that angular momentum of this system will remain conserved

L_i = L_f

mv \frac{L}{2} = (I_1 + I_2)\omega

here we will have

L = 0.250 m

v = 385 m/s

m = 1.90 gram

now moment of inertia of the plate will be

I_1 = \frac{ML^2}{3}

I_1 = \frac{0.750 (0.250)^2}{3} = 0.0156 kg m^2

I_2 = m(\frac{L}{2})^2 = 0.0019(0.125)^2 = 2.97 \times 10^{-5} kg m^2

now from above equation

0.0019 (385)(0.125) = (0.0156 + 2.97 \times 10^{-5})\omega

\omega = 5.85 rad/s

8 0
2 years ago
While traveling from Boston to Hartford, Person A drives at a constant speed of 55 mph for the entire trip. Person B drives at 6
Ne4ueva [31]

Answer:

B will take 1.034 times the time of A from Boston to Hartford.

Explanation:

Let the distance from Boston to Hartford be S.

Person A drives at a constant speed of 55 mph for the entire trip,

Time taken by person A

             t_A=\frac{S}{55}

Person B drives at 65 mph for half the distance and then drives 45 mph for the second half of the distance.

Time taken by person B

            t_B=\frac{\frac{S}{2}}{65}+\frac{\frac{S}{2}}{45}=\frac{S}{130}+\frac{S}{90}=\frac{220S}{130\times 90}=\frac{11S}{585}

Ratio of time of arrival of B to A

                      \frac{t_B}{t_A}=\frac{\frac{11S}{585}}{\frac{S}{55}}=\frac{121}{117}=1.034

B will take 1.034 times the time of A from Boston to Hartford.

8 0
2 years ago
A puck rests on a horizontal frictionless plane. A string is wound around the puck and pulled on with constant force. What fract
Ivan

Answer:

Explanation:

Let v be the linear velocity ,  ω be the angular velocity  and I be the moment of inertia of the the puck.

Kinetic energy ( linear ) = 1/2 mv²

Rotational kinetic energy = 1/2 I ω²

I = 1/2 m r² ( m and r be the mass and radius of the puck )

Rotational kinetic energy = 1/2 x1/2 m r² ω²

= 1/4 m v² ( v = r ω )

Total energy

= Kinetic energy ( linear ) + Rotational kinetic energy

= 1/2 mv² +  1/4 m v²

= 3/4 mv²

rotational K E / Total K E = 1/4 m v² / 3/4 mv²

= 1 /3

So  1 /3  rd of total energy is rotational K E.

3 0
2 years ago
Which of the following four circuit diagrams best represents the experiment described in this problem?
Valentin [98]

We don't see any circuit diagrams.  

This worries us for a few seconds, until we realize that we don't know anything about the experiment described in the problem either, so we don't have to worry about it at all.

6 0
2 years ago
A 0.250 kgkg toy is undergoing SHM on the end of a horizontal spring with force constant 300 N/mN/m. When the toy is 0.0120 mm f
konstantin123 [22]

Answer:

(a) The total energy of the object at any point in its motion is 0.0416 J

(b) The amplitude of the motion is 0.0167 m

(c) The maximum speed attained by the object during its motion is 0.577 m/s

Explanation:

Given;

mass of the toy, m = 0.25 kg

force constant of the spring, k = 300 N/m

displacement of the toy, x = 0.012 m

speed of the toy, v = 0.4 m/s

(a) The total energy of the object at any point in its motion

E = ¹/₂mv² + ¹/₂kx²

E = ¹/₂ (0.25)(0.4)² + ¹/₂ (300)(0.012)²

E = 0.0416 J

(b) the amplitude of the motion

E = ¹/₂KA²

A = \sqrt{\frac{2E}{K} } \\\\A = \sqrt{\frac{2*0.0416}{300} } \\\\A = 0.0167 \ m

(c) the maximum speed attained by the object during its motion

E = \frac{1}{2} mv_{max}^2\\\\v_{max} = \sqrt{\frac{2E}{m} } \\\\v_{max} = \sqrt{\frac{2*0.0416}{0.25} } \\\\v_{max} = 0.577 \ m/s

8 0
2 years ago
Other questions:
  • What is the magnitude of the external force f necessary to hold the cart motionless at point c?
    14·1 answer
  • Lydia is often described as having a positive outlook on life. She assumes the best of people and situations. Lydia exemplifies
    14·2 answers
  • A 1 530-kg automobile has a wheel base (the distance between the axles) of 2.70 m. The automobile's center of mass is on the cen
    13·1 answer
  • A 45.0-kg person steps on a scale in an elevator. The scale reads 460 n. What is the magnitude of the acceleration of the elevat
    11·1 answer
  • A stiff wire bent into a semicircle of radius a is rotated with a frequency f in a uniform magnetic field, as suggested in Fig.
    13·1 answer
  • A metal sphere with radius R1 has a charge Q1. Take the electric potential to be zero at an infinite distance from the sphere.Ex
    5·1 answer
  • A 1500 kg car enters a section of curved road in the horizontal plane and slows down at a uniform rate from a speed of 100 km/h
    13·1 answer
  • A cleaver physics professor wants to create a situation where a block starts from rest at the top of a 31.0° inclined plane and
    13·1 answer
  • An oil drop of mass 3.25X10^-15 kg falls vertically with uniform velocity, through the air between vertical parallel plates whic
    11·1 answer
  • Starting at t = 0 a net external force in the +x-direction is applied to an object that has mass 5.00 kg. A graph of the force a
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!