answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Varvara68 [4.7K]
1 year ago
10

What is the smallest height needed to make a wave?

Physics
2 answers:
GaryK [48]1 year ago
4 0

the answer for this question is 6 feet

tatyana61 [14]1 year ago
4 0
6 feet .................
You might be interested in
In two separate double slit experiments, an interference pattern is observed on a screen. In the first experiment, violet light
sashaice [31]

Answer:

\lambda_3 = 4.72*10^{-7} m

Explanation:

given data:

wavelength \lambda = 708nm = 708*10^{-9} m

using the following relation:

y = \frac{mL\lambda}{d}

according to the given information

second and third dark fringe is at same location. so

y_2 = y_3

\frac{m_2L\lambda_2}{d} = \frac{m_3L\lambda_3}{d}

m_2\lambda_2 = m_3\lambda_3

2*708*10^{-9} = 3*\lambda_3

\lambda_3 = \frac{2*708*10^{-9}}{3}

\lambda_3 = 4.72*10^{-7} m

4 0
2 years ago
A rigid vessel of 0.06 m3 volume contains an ideal gas , CV =2.5R, at 500K and 1 bar.a). if 15000J heat is transferred to the ga
andreev551 [17]

Answer:

Given that

V= 0.06 m³

Cv= 2.5 R= 5/2 R

T₁=500 K

P₁=1 bar

Heat addition = 15000 J

We know that heat addition at constant volume process ( rigid vessel ) given as

Q = n Cv ΔT

We know that

P V = n R T

n=PV/RT

n= (100 x 0.06)(500 x 8.314)

n=1.443 mol

So

Q = n Cv ΔT

15000 = 1.433 x 2.5 x 8.314 ( T₂-500)

T₂=1000.12 K

We know that at constant volume process

P₂/P₁=T₂/T₁

P₂/1 = 1000.21/500

P₂= 2 bar

Entropy change given as

\Delta S=nC_P\ln \dfrac{T_2}{T_1}-nR\ln \dfrac{P_2}{P_1}

Cp-Cv= R

Cp=7/2 R

Now by putting the values

\Delta S=nC_P\ln \dfrac{T_2}{T_1}-nR\ln \dfrac{P_2}{P_1}

\Delta S=1.443\times 3.5\times 8.314\ln \dfrac{1000.21}{500}-1.443\times 8.314\ln \dfrac{2}{1}

a)ΔS= 20.79 J/K

b)

If the process is adiabatic it means that heat transfer is zero.

So

ΔS= 20.79 J/K

We know that

\Delta S_{univ}=\Delta S_{syatem}+\Delta S_{surr}

Process is adiabatic

\Delta S_{surr}=0

\Delta S_{univ}=\Delta S_{syatem}+\Delta S_{surr}

\Delta S_{univ}= 20.79 +0

\Delta S_{univ}= 20.79

3 0
2 years ago
A child's toy consists of a m = 36 g monkey suspended from a spring of negligible mass and spring constant k. When the toy monke
kolezko [41]

Answer:

Part A - 3N/m

Part B - see attachment

Part C - 4.9 × 10-³J

Part D - E = 1/2kd² + 1/2mv² + mgh

Explanation:

This problem requires the knowledge of simple harmonic motion for cimplete solution. To find the spring constant in part A the expression relating the force applied to a spring and the resulting stretching of the spring (hooke's law) is required which is F = kx.

The free body diagram can be found in the attachment. Fp(force of pull), Ft(Force of tension) and W(weight).

The energy stored in the pring as a result of the stretching of d = 5.7cm is 1/2kd².

Part D

Three forces act on the spring-monkey system and they do work in different forms: kinetic energy 1/2mv² , elastic potential

energy due to the restoring force in the spring or the tension force 1/2kd², and the gravitational potential energy mgh of the position of the system. So the total energy of the system E = 1/2kd² + 1/2mv² + mgh.

8 0
2 years ago
There are devices to put in a light socket that control the current through a lightbulb, thereby increasing its lifetime. Which
Dmitrij [34]

Answer: B

Explanation:

Limiting the maximum current through the bulb. This will help in preserving or improving the bulb's lifetime and also this won't have an effect on the brightness of the bulb as brightness is affected by the average value. Although brightness is a factor of current, reducing the maximum current won't have any bearing on the average current the bulb is getting.

4 0
2 years ago
An object that weighs 2.450 N is attached to an ideal massless spring and undergoes simple harmonic oscillations with a period o
Viktor [21]

Answer:

Spring constant, k = 24.1 N/m

Explanation:

Given that,

Weight of the object, W = 2.45 N

Time period of oscillation of simple harmonic motion, T = 0.64 s

To find,

Spring constant of the spring.

Solution,

In case of simple harmonic motion, the time period of oscillation is given by :

T=2\pi\sqrt{\dfrac{m}{k}}

m is the mass of object

m=\dfrac{W}{g}

m=\dfrac{2.45}{9.8}

m = 0.25 kg

k=\dfrac{4\pi^2m}{T^2}

k=\dfrac{4\pi^2\times 0.25}{(0.64)^2}

k = 24.09 N/m

or

k = 24.11 N/m

So, the spring constant of the spring is 24.1 N/m.

6 0
2 years ago
Other questions:
  • Han and Greedo fire their blasters at each other. The blasts are loud, and the intensity of the sound spreads through the cantin
    11·2 answers
  • A 1000-kg car is slowly picking up speed as it goes around a horizontal curve whose radius is 100 m. The coefficient of static f
    13·2 answers
  • A 1 200-kg car traveling initially at vCi 5 25.0 m/s in an easterly direction crashes into the back of a 9 000-kg truck moving i
    14·1 answer
  • Suppose that 8 turns of a wire are wrapped around a pipe with a length of 60 inches and a circumference of 4​ inches, so that th
    7·2 answers
  • A 50 kg rocket generates 990 N of thrust. What will be its acceleration if it is launched straight up?
    13·1 answer
  • Josh is learning to dive.
    7·1 answer
  • What is the approximate pressure of a storage cylinder of recovered r-410a that does not contain any non-condensable impurities
    14·1 answer
  • In a closed system that has 45 J of mechanical energy, the gravitational
    11·1 answer
  • What is the magnitude of the momentum of a 11kg object moving at 2.2 m/s?
    11·1 answer
  • g The international space station has an orbital period of 93 minutes at an altitude (above Earth's surface) of 410 km. A geosyn
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!