Answer:
0.50
Step-by-step explanation:
Given that a package of self-sticking notepads contains 6 yellow, 6 blue, 6 green, and 6 pink notepads. An experiment consists of randomly selecting one of the notepads and recording its color
The probability that a green notepad is selected given that it is either blue or green is to be found out
Let A = event that selected notepad is green or blue
B = selected notepad is green
The probability that a green notepad is selected given that it is either blue or green is to be found out
= P(B/A)
=P(AB)/P(A)
=Prob (green)/P(green or blue)
= 
Answer:

Step-by-step explanation:
Given
Represent the weight of the Jar with J and the sugar with S
Initially, we have:

After 2/3 of sugar is removed we have:

Required
Determine the weight of the jar
--- (1)
--- (2)
Simplify (2)

Take LCM


Make S the subject in (1)


Substitute 850g - J for S in 

Multiply through by 3


Collect Like Terms


Make J the subject


<em>The jar weighs 370g</em>
Answer: We are given:

We need to find the z scores for the following vacation expense amounts:
$197, $277, $310
We know that z score formula is:

When
, the z score is:



When
, the z score is:



When
, the z score is:



Therefore, the z scores for the vacation expense amounts $197 per day, $277 per day, and $310 per day are -0.83, 0.5 and 1.05 respectively
The question is missing parts. Here is the complete question.
Let M =
. Find
and
such that
, where
is the identity 2x2 matrix and 0 is the zero matrix of appropriate dimension.
Answer: 

Step-by-step explanation: Identity matrix is a sqaure matrix that has 1's along the main diagonal and 0 everywhere else. So, a 2x2 identity matrix is:
![\left[\begin{array}{cc}1&0\\0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%260%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D)
![M^{2} = \left[\begin{array}{cc}6&5\\-1&-4\end{array}\right]\left[\begin{array}{cc}6&5\\-1&-4\end{array}\right]](https://tex.z-dn.net/?f=M%5E%7B2%7D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D6%265%5C%5C-1%26-4%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D6%265%5C%5C-1%26-4%5Cend%7Barray%7D%5Cright%5D)
![M^{2}=\left[\begin{array}{cc}31&10\\-2&15\end{array}\right]](https://tex.z-dn.net/?f=M%5E%7B2%7D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D31%2610%5C%5C-2%2615%5Cend%7Barray%7D%5Cright%5D)
Solving equation:
![\left[\begin{array}{cc}31&10\\-2&15\end{array}\right]+c_{1}\left[\begin{array}{cc}6&5\\-1&-4\end{array}\right] +c_{2}\left[\begin{array}{cc}1&0\\0&1\end{array}\right] =\left[\begin{array}{cc}0&0\\0&0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D31%2610%5C%5C-2%2615%5Cend%7Barray%7D%5Cright%5D%2Bc_%7B1%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D6%265%5C%5C-1%26-4%5Cend%7Barray%7D%5Cright%5D%20%2Bc_%7B2%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%260%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D0%260%5C%5C0%260%5Cend%7Barray%7D%5Cright%5D)
Multiplying a matrix and a scalar results in all the terms of the matrix multiplied by the scalar. You can only add matrices of the same dimensions.
So, the equation is:
![\left[\begin{array}{cc}31&10\\-2&15\end{array}\right]+\left[\begin{array}{cc}6c_{1}&5c_{1}\\-1c_{1}&-4c_{1}\end{array}\right] +\left[\begin{array}{cc}c_{2}&0\\0&c_{2}\end{array}\right] =\left[\begin{array}{cc}0&0\\0&0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D31%2610%5C%5C-2%2615%5Cend%7Barray%7D%5Cright%5D%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D6c_%7B1%7D%265c_%7B1%7D%5C%5C-1c_%7B1%7D%26-4c_%7B1%7D%5Cend%7Barray%7D%5Cright%5D%20%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dc_%7B2%7D%260%5C%5C0%26c_%7B2%7D%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D0%260%5C%5C0%260%5Cend%7Barray%7D%5Cright%5D)
And the system of equations is:

There are several methods to solve this system. One of them is to multiply the second equation to -1 and add both equations:




With
, substitute in one of the equations and find
:





<u>For the equation, </u>
<u> and </u>
<u />
The volume of the display is 900 cubic inches.
The formula for the volume of a prism is L x W x H.
In the small shape, we have: 5 x 5 x 12 = 300
In the large shape, we have: 5 x 5 x 24 = 600
Add them together and we have 900 cubic inches.