<em>Answer:</em>
The equlibrium concentration sof Ca+2 ion willl be 4.9×10∧-3 M
<em>Data Given:</em>
Ksp of CaSO4 = 2.4 × 10∧-5
CaSO4 ⇔ Ca+2 + SO4∧-2
<em>Solution:</em>
Ksp = [Ca+2].[ SO4∧-2]
2.4 × 10∧-5 = [x].[x]= x²
x = 4.9×10∧-3 M
<em>Result:</em>
- The conc. of Ca+2 ion is 4.9×10∧-3 M
The student would find the water and sand, because salt dissolves in water unless it was ocean water or sea water
I'm certain it's "D"
...because it can't be "A" or "B" because solubility IS a property but to actually determine whether these two substances are the same or different we would need at least two-three properties (like boiling point or specific heat).
and it can't be "C" because the melting point is just simply irrelevant when comparing the solubility of two substances.
Ikr behehbenekebe sgwhebejebeb
Answer:
The Michaelis‑Menten equation is given as
v₀ = Kcat X [E₀] X [S] / (Km + [S])
where,
Kcat is the experimental rate constant of the reaction; [s] is the substrate concentration and
Km is the Michaelis‑Menten constant.
Explanation:
See attached image for a detailed explanation