Answer:
The answer is below
Step-by-step explanation:
The question is not complete, what are the coordinates of point Q and R. But I would show how to solve this.
The location of a point O(x, y) which divides line segment AB in the ratio a:b with point A at (
) and B(
) is given by the formula:

If point Q is at (
) and S at (
) and R(x, y) divides QS in the ratio QR to RS is 3:5, The coordinates of R is:

Let us assume Q(−9,4) and S(7,−4)

You would be able to hire 40. Hope this helps
Answer:
y = 16x/65
Step-by-step explanation:
Given:
Triangle ABE is similar to triangle ACD. AED and ABC are straight lines
EB and DC are parallel
The area of quadrilateral BCDE = xcm²
The area of triangle ABE = ycm²
Find attached the diagram from the above information.
In similar triangles, the ratio of their corresponding angles are equal.
Also, the ratio of the area of the two triangles = square of ratio of the corresponding sides of the two triangles.
Area ∆ACD/area of ∆ABE = (DC/EB)²
Area ∆ACD/area of ∆ABE = [(area of quadrilateral BCDE +
area of ∆ABE)]/(area of ∆ABE)
(x+y)/y = (DC/EB)²
(x+y)/y = (9/4)²
x+y = (81/16)y
x = (81/16)y - y
x = (81y - 16y)/16
x = 65y/16
Making y subject of formula
16x = 65y
y = 16x/65
An expression for y in terms of x:
y = 16x/65
Answer:
Step-by-step explanation:
C
Answer:
y=7600(5^(t/22))
Step-by-step explanation:
This is going to be an exponential function as it grows rapidly.
This type of question can be solved using the formula y=a(r^x), where a is the inital amount, r the factor by which the amount increases and x is the unit of time after which the amount increases.
x=t/22
a=7600
r=5
∴y=7600(5^(t/22))