Answer is: mass of lithium fluoride is 3,732 grams.
m(solution) = 18,66 g.
ω(solution) = 20% = 20% ÷ 100% = 0,2.
m(LiF) = ?
ω(solution) = m(LiF) ÷ m(solution).
m(LiF) = ω(solution) · m(solution).
m(LiF) = 0,2 · 18,66 g.
m(LiF) = 3,732 g.
Answer: Endothermic reaction
Explanation:
Exothermic reactions are defined as the reactions in which energy of the product is lesser than the energy of the reactants. The total energy is released in the form of heat and
for the reaction comes out to be negative.
Endothermic reactions are defined as the reactions in which energy of the product is greater than the energy of the reactants. The total energy is absorbed in the form of heat and
for the reaction comes out to be positive.
As the energy of reactants is 180 kJ and that of products is 300 kJ, the energy of products is greater than that of reactants, which means the energy has been absorbed and reaction is endothermic.
I will solve this question assuming the reaction equation look like this:
<span>MnO2 + 4 HCl ---> MnCl2 + Cl2 + 2 H2O.
</span>
For every one molecule of MnO2 used, there will be one molecule of Cl2 formed. If the molecular mass of MnO2 is 87g/mol and molecular mass of Cl2 is <span> 73.0 g/mol, the mass of MnO2 needed would be:
Cl mass/Cl molecular mass * MnO2 molecular mass=
25g/ (73g/mol) * (87g/mol) * 1/1= 29.8 grams</span>
To most geologists, the term "acid test" means placing a drop of dilute (5% to 10%) hydrochloric acid on a rock or mineral and watching for bubbles of carbon<span> dioxide gas to be released. The bubbles signal the presence of carbonate minerals such as</span>calcite<span>, </span>dolomite<span>, or one of the minerals listed in Table 1.</span>