answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mart [117]
2 years ago
14

0.01 M HCl solution has a pH of 2. Suppose that during the experiment, both the universal pH indicator and the cabbage indicator

turn orange-red for 0.01 M HCl. What can you conclude about the the cabbage indicator key?
Chemistry
4 answers:
evablogger [386]2 years ago
6 0
A) It matches the universal pH indicator and is indicating the proper pH. Yes, this is correct. Have a great day!
NNADVOKAT [17]2 years ago
5 0
It matches the universal pH indicator and is indicating the proper pH
zvonat [6]2 years ago
5 0

Answer:

A ) it matches the universal pH indicator and is indicating the proper pH

Novay_Z [31]2 years ago
4 0
YOU ARE PROBABLY CHEATING RIGHT NOW!!! ... that's cool ig...
You might be interested in
How many grams of the excess reagent are left over when 6.00g of CS2 gas react with 10.0g of Cl2 gas in the following reaction:
WARRIOR [948]

Answer:

CS₂ = 2.43 g

Explanation:

Data Given:

CS₂ gas = 6.00g

Cl₂ = 10.0g

Reaction Given:

                   CS₂(g) + 3Cl₂(g) --------> CCl₄(l) + S₂Cl₂(l)

Solution

Limiting Reagent :

The reactant which is less in amount control the amount of product and know as limiting reagent.

Excess Reagent:

The amount of reactant which are in excess and leftover at the end of reaction and product formed.

Now we have to find the reactant that is in excess

For this we will look at the Reaction

                       CS₂   +    3Cl₂  -------->   CCl₄   +  S₂Cl₂

                       1 mol     3 mol               1 mol      1 mol

we come to know from the above reaction that

1 mole of CS₂ react with 3 mole of Cl₂ to produce 1 mole of CCl₄ and 1 mole of  S₂Cl₂

Now to convert mole to mass we required molar masses

molar mass of CS₂ = 12 +  2(32)

molar mass of CS₂ = 76 g/mol

molar mass of Cl₂ = 2(35.5)

molar mass of Cl₂ = 71 g/mol

if we represent mole in grams then

             CS₂              +    3Cl₂             -------->   CCl₄   +  S₂Cl₂

      1 mol (76 g/mol)     3 mol (71 g/mol)

                CS₂   +    3Cl₂   -------->   CCl₄   +  S₂Cl₂

                 76 g       213 g

So,

we come to know that 76 g of CS₂ will combine with 213 g of Cl₂ to form product.

So now look for the ratio of both reactant

                   CS₂    :    Cl₂

                   76 g   :    213 g

                    1  g     :      2.8 g

So, the for every one gram of CS₂ required 2.8g Cl₂

So from this details

we apply unity formula

                 2.8 g of Cl₂ ≅  1 g of CS₂

                 10 g of Cl₂ ≅  ? g of CS₂

by doing cross multiplication

                    g of CS₂ = 10 x 1 / 2.8

                    g of CS₂ = 3.6 g

So,

10.0g of Cl₂ used 3.57 g of CS₂

It showed that 3.57 g of CS₂ used and the remaining amount of CS₂ is

               Remaining amount of CS₂ = 6 - 3.57 = 2.43 g

 

8 0
2 years ago
How many hydrogen bonds can CH2O make to water
VladimirAG [237]
Hydrogen bonds are not like covalent bonds. They are nowhere near as strong and you can't think of them in terms of a definite number like a valence. Polar molecules interact with each other and hydrogen bonds are an example of this where the interaction is especially strong. In your example you could represent it like this: 

<span>H2C=O---------H-OH </span>

<span>But you should remember that the H2O molecule will be exchanging constantly with others in the solvation shell of the formaldehyde molecule and these in turn will be exchanging with other H2O molecules in the bulk solution. </span>

<span>Formaldehyde in aqueous solution is in equilibrium with its hydrate. </span>

<span>H2C=O + H2O <-----------------> H2C(OH)2</span>
5 0
2 years ago
A student has two samples of NaCl, each one from a different source. Assume that the only potential contaminant in each sample i
bija089 [108]

Answer:

The correct option is;

A. Which sample has the higher purity

Explanation:

The information given relate to the presence of two samples of NaCl, from different sources

The only potential contaminant in each of the sources = KCl

The content of the sample = NaCl

The molar mass of NaCl = 58.44 g/mol

The molar mass of KCl = 74.5513 g/mol

Let the number of moles of KCl in the sample = X

For a given mass of NaCl, KCl mixture, we have;

The molar mass of potassium = 39.0983 g/mol

The molar mass of chlorine = 35.453 g/mol

The molar mass of sodium ≈ 23 g/mol

Therefore;

Each mole of KCl, will yield 35.453 g/mol per 74.5513 g/mol of KCl

While each mole of NaCl will yield 35.453 g/mol per 58.44 g/mol of NaCl

Therefore, the pure sodium chloride sample will yield more chlorine per unit mass of sample.

As such if the two samples have the same mass, the sample with the contaminant of KCl will yield less mass of chlorine per unit mass of the sample, from which the student will be able to tell the purity of the solution.

The sample with the higher purity will yield  a higher mass chlorine per unit mass of the sample.

6 0
2 years ago
This is the chemical formula for nickel tetracarbonyl (a powerfully poisonous liquid used in nickel refining) Ni(CO)4 A chemical
OverLord2011 [107]

Answer : The number of moles of oxygen present in a sample are 11.3 moles.

Explanation :

The given compound is, Ni(CO)_4

By the stoichiometry we can say that, 1 mole of of Ni(CO)_4 has 4 moles of CO.

Or we can say that, 1 mole of of Ni(CO)_4 has 1 mole of nickel (Ni), 4 moles of carbon (C) and 4 moles of oxygen.

That means,

Number of moles of carbon = Number of moles of oxygen

As we are given that:

Number of moles of carbon = 11.3 moles

So, number of moles of oxygen = number of moles of carbon = 11.3 moles

Therefore, the number of moles of oxygen present in a sample are 11.3 moles.

7 0
2 years ago
Calculate the maximum concentration (in m) of silver ions (ag+) in a solution that contains 0.025 m of co32-. the ksp of ag2co3
Helen [10]
Equilibrium equation is

<span>Ag2CO3(s) <---> 2 Ag+(aq) + CO32-(aq) </span>

<span>From the reaction equation above, the formula for Ksp: </span>

<span>Ksp = [Ag+]^2 [CO32-] = 8.1 x 10^-12 </span>
<span>You know  [CO32-], so you can solve for [Ag+] as: </span>
<span>(8.1 x 10^-12) = [Ag+]^2 (0.025) </span>
<span>[Ag+]^2 = 3.24 x 10^-10 </span>
<span>[Ag+] = 1.8 x 10^-5 M </span>
5 0
2 years ago
Other questions:
  • what is the best definition of an element? a. an element is a substance that cannot be broken down. b. an element is a positivel
    10·1 answer
  • At STP, how many moles are in 0.880L of He gas?
    8·1 answer
  • The acid-dissociation constant at 25.0 °c for hypochlorous acid (hclo) is 3.0 ⋅ 10−8. at equilibrium, the molarity of h3o+ in a
    11·1 answer
  • A 141mg sample was placed on a watch glass that has a mass of 9.203g. what is the mass of the watch glass and sample in grams?
    11·1 answer
  • How many grams of methane gas (CH4) occupy a volume of 11.2 liters at STP
    5·2 answers
  • Hydrazine (N2H4) and dinitrogen tetroxide (N2O4) form a self-igniting mixture that has been used as a rocket propellant. The rea
    7·1 answer
  • Which of the following substances would release the most amount of heat when they cool from 50oC to 25oC if you started with equ
    8·1 answer
  • A piece of antimony with a mass of 17.41 g is submerged in 46.3 cm3 of water in a graduated cylinder. The water level increases
    9·1 answer
  • Could the other molecules in this simulation (argon, oxygen, and water) be considered pure substances? Explain your thinking.
    14·1 answer
  • Four students were asked to name the parts of an atom that determine the atom’s identity and chemical properties. The students’
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!