Answer:
ΔU=-369.2 kJ/mol.
Explanation:
We start from the equation:
Δ(H)=ΔU+Δ(PV), which is an extension of the well known relation: H=U+PV.
If Δ(PV) were calculated by ideal gas law,
PV=nRT
Δ(PV)=RTΔn.
Where Δn is the change of moles due to the reaction; but, this reaction does not give a moles change (Four moles of HCl produced from 4 moles of reactants), so Δ(PV)=0.
So, for this case, ΔH=ΔU.
The enthalpy of reaction given is for one mole of reactant, so the enthalpy of reaction for the reaction of interest must be multiplied by two:

ΔU=-369.2 kJ/mol.
0.208 is the specific heat capacity of the metal.
Explanation:
Given:
mass (m) = 63.5 grams 0R 0.0635 kg
Heat absorbed (q) = 355 Joules
Δ T (change in temperature) = 4.56 degrees or 273.15+4.56 = 268.59 K
cp (specific heat capacity) = ?
the formula used for heat absorbed and to calculate specific heat capacity of a substance will be calculated by using the equation:
q = mc Δ T
c = 
c = 
= 0.208 J/gm K
specific heat capacity of 0.208 J/gm K
The specific heat capacity is defined as the heat required to raise the temperature of a substance which is 1 gram. The temperature is in Kelvin and energy required is in joules.
K, P, K, K, P, K, K, P, K, P. If it is moving, it is kinetic, if it isn't, it's potential. the sugar one is a little tricky using that method though, because we generally consider this in terms of spacial movement, but sugar holds energy which is later released by your body to allow you to move.the chemical bonds have potential energy because they release energy when broken.
d. When aluminum-28 undergoes beta decay, silicon-28 is produced.
Explanation:
When the nuclei of aluminium-28 decays, it produces silicon- 28:
Aluminium ²⁸₁₃Al
Silicon 28 ²⁸₁₄Si
beta particle ⁰₋₁
²⁸₁₃Al → ²⁸₁₄Si + ⁰₋₁
This way, the mass and atomic number are conserved.
Conservation of mass number:
28 = 28 + 0, 28 = 28
13 = 14 -1 , 13 = 13
Learn more:
Balancing nuclear equations brainly.com/question/10094982
#learnwithBrainly