Answer:
P1 = 2.5ATM
Explanation:
V1 = 28L
T1 = 45°C = (45 + 273.15)K = 318.15K
V2 = 34L
T2 = 35°C = (35 + 273.15)K = 308.15K
P1 = ?
P2 = 2ATM
applying combined gas equation,
P1V1 / T1 = P2V2 / T2
P1*V1*T2 = P2*V2*T1
Solving for P1
P1 = P2*V2*T1 / V1*T2
P1 = (2.0 * 34 * 318.15) / (28 * 308.15)
P1 = 21634.2 / 8628.2
P1 = 2.5ATM
The initial pressure was 2.5ATM
Answer:
<ERROR>-----------------------------------------------------------------------------<ERROR>
Explanation:
Better than i am and very precice
Here we will use the general formula of Nernst equation:
Ecell = E°Cell - [(RT/nF)] *㏑Q
when E cell is cell potential at non - standard state conditions
E°Cell is standard state cell potential = - 0.87 V
and R is a constant = 8.314 J/mol K
and T is the temperature in Kelvin = 73 + 273 = 346 K
and F is Faraday's constant = 96485 C/mole
and n is the number of moles of electron transferred in the reaction=2
and Q is the reaction quotient for the reaction
SO42-2(aq) + 4H+(aq) +2Br-(aq) ↔ Br2(aq) + SO2(g) +2H2O(l)
so by substitution :
0 = -0.87 - [(8.314*346K)/(2* 96485)*㏑Q → solve for Q
∴ Q = 4.5 x 10^-26
<span>0.127 moles
The formula for nitroglycerin is C3H5N3O9 so let's first calculate the molar mass of it.
Carbon = 12.0107
Nitrogen = 14.0067
Hydrogen = 1.00794
Oxygen = 15.999
C3H5N3O9 = 3 * 12.0107 + 5 * 1.00794 + 3 * 14.0067 + 9 * 15.999 = 227.0829
Now calculate the number of moles of nitroglycerin you have by dividing the mass by the molar mass
2.50 ml * 1.592 g/ml / 227.0829 g/mol = 0.017527 mol
The balanced formula for when nitroglycerin explodes is
4 C3H5N3O9 => 12 CO2 + 10 H2O + O2 + 6 N2
Since all of the products are gasses at the time of the explosion, there is a total of 29 moles of gas produced for every 4 moles of nitroglycerin
Now multiply the number of moles of nitroglycerin by 29/4
0.017527 mol * 29/4 = 0.12707075 moles
Round to 3 significant figures, giving 0.127 moles</span>