Answer:
<em>96π units²</em>
Step-by-step explanation:
Find the diagram attached
Area of a sector is expressed as;
Area of a sector = θ/2π * πr²
Given
θ = 3π/4
r = 16
Substitute into the formula
area of the sector = (3π/4)/2π * π(16)²
area of the sector = 3π/8π * 256π
area of the sector = 3/8 * 256π
area of the sector = 3 * 32π
<em>area of the sector =96π units²</em>
Answer:
4.979044478499338 × 10²⁶
Step-by-step explanation:
Combination can be used to determine the number of ways the mice can be selected for the drugs (A, B) and the control group.
Combination factorial is define by ⁿCr = 
21 group of mice receiving Drug A can be selected in ⁶⁰C₂₁ = 
(60 - 21 = 39 ) mice remained for selection of 21 mice for the second drug
Drug B 21 mice can be chosen with ³⁹C₂₁ = 
( 39 - 21 = 18) remained for control with ¹⁸C₁₈ =
The number of ways the mice can be chosen for drug A, drug B and the control = ⁶⁰C₂₁ × ³⁹C₂₁ × ¹⁸C₁₈ =
×
×
= 4.979044478499338 × 10²⁶
Answer:
37.23% probability that randomly selected homework will require between 8 and 12 minutes to grade
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

What is the probability that randomly selected homework will require between 8 and 12 minutes to grade?
This is the pvalue of Z when X = 12 subtracted by the pvalue of Z when X = 8. So
X = 12



has a pvalue of 0.4052
X = 8



has a pvalue of 0.0329
0.4052 - 0.0329 = 0.3723
37.23% probability that randomly selected homework will require between 8 and 12 minutes to grade