Answer:
y2 = (6x + 7)/36 + (Dx + E)e^x
Step-by-step explanation:
The method of reduction of order is applicable for second-order differential equations.
For a known solution y1 of a 2nd order differential equation, this method assumes a second solution in the form Uy1 which satisfies the said differential equation. It then assumes a reduced order for U'' (w' = U'').
The differential equation becomes easy to solve, and all that is left are integration and substitutions.
Check attachments for the solution to this problem.
Let’s look at the permutations of the letters “ABC.” We can write the letters in any of the following ways:
ABC
ACB
BAC
BCA
CBA
CAB
Since there are 3 choices for the first spot, two for the next and 1 for the last we end up with (3)(2)(1) = 6 permutations. Using the symbolism of permutations we have:

. Note that the first 3 should also be small and low like the second one but I couldn’t get that to look right.
Now let’s see how this changes if the letters are AAB. Since the two As are identical, we end up with fewer permutations.
AAB
ABA
BAA
To make the point a bit better let’s think of one A are regular and one as bold
A.
ABA and AB
A look different now because we used bold for one of the As but if we don’t do this we see that these are actual the same. If they represented a word they would be the same exact word.
So in this case the formula would be

. We use 2! In the denominator because there are 2 repeating letters. If there were three we would use 3!
Hopefully, this is enough to let you see that the answer is A. The number of permutations is limited by the number of items that are identical.
We let the number of years that the two jobs will have the same payment be denoted as t. Equating the wages of these two jobs after t - 1 years will give us an equation of,
22,000 + 4000(t -1) = 26,000 + 2000(t - 1)
The value of t from the generated equation is 3. Therefore, after 3 years the jobs will be paying the same wages.
Answer:
UNIF(2.66,3.33) minutes for all customer types.
Step-by-step explanation:
In the problem above, it was stated that the office arranged its customers into different sections to ensure optimum performance and minimize workload. Furthermore, there was a service time of UNIF(8,10) minutes for everyone. Since there are only three different types of customers, the service time can be estimated as UNIF(8/3,10/3) minutes = UNIF(2.66,3.33) minutes.
Answer:
-34.5≥ x
Step-by-step explanation:
- Simply because the values start from -34.5 and then decrease