Answer:
<u>The correct answer is A. 16.5%</u>
Step-by-step explanation:
1. Let's review the information given to us to answer the question correctly and to calculate the trend:
2006 2007 Trend
Top Coats 297 223 -24.92%
Parkas 210 210 + 0%
Jackets 213 285 +33.80%
Raincoats 137 259 +89.05
Trench coats 103 127 +23.30%
Total 960 1,104 +15%
2. If the trend shown in these graphs stays constant, what percent of the market will parkas occupy in 2008?
Let's calculate the percent of the market occupied by parkas.
In 2006 = 210/960 = 21.88%
In 2007 = 210/1,104 = 19.02%
In 2008 = 210/1,270 = 16.54% (210 + 0 = 210; 1,104 + 15% = 1,270)
<u>The correct answer is A. 16.5%</u>
⭐Solución de problemas: Cada encomiendo tiene un peso de 2 kilogramos. En fracción esto representa 1/4 de la masa total.
Y
¿por qué? Usted tiene una masa total entre los 4 encomiendos de 8 kilogramos, por lo que en orden
para expresar el peso de cada uno de ellos, tenemos
la siguiente expresión: Masa total de encomiendas (kg)/Número de encomiendas (unidad)Sustituimos:
8 kg/4 s
2 kg por encomiendaOfertamos la fracción que representa cada una en el total:
kg por encomienda/total de kg
2/8 x 1/4
Answer:
12 = f(40)
Step-by-step explanation:
From the given information:
We are being told that:
G = tons per week
p = people in thousands
However, the relation existing between the amount of garbage that is produced by a city with population p can be expressed as:
G = f(p)
Similarly, they said there exists a total population of 40000 persons in the town of Tola. i.e. 40 thousand and also 12 tons of garbage is produced by week i.e. that will be the value for G.
Then, we have:
12 = f(40)
Answer:
x < 11.5
Step-by-step explanation:
2x + 9 < 32
(2x + 9) - 9 < 32 - 9
2x < 23
2x/2 < 23/2
x < 11.5
Answer:
Therefore the value of tangent of ∠
is
°.
Step-by-step explanation:
Given that,
In Δ
, ∠
°,
and 
and we have to find the value of tangent of ∠
Diagram of the given triangle is shown below:
Now,
Δ
is a right angle triangle, so we can use all the trigonometric ratio.


= 
tangent of ∠
=
= 
= 
= 
∴∠
= 
=
° ≅
°
Therefore the value of tangent of ∠
is
°.