It translates to
which solves to
after dividing both sides by 78. This means n is equal to 4 or it can be larger than 4.
Given: 1 cm = 2 3/4 ft ; kitchen length = 4 1/2 cm
2 3/4 = 11/4; 4 1/2= 9/2
11/4 x 9/2 = 99/8 =12 3/8
OR You could use decimals
2 3/4 = 2.75 ; 4 1/2 = 4.5
2.75 x 4.5 = 12.375
12.375 = 12 375/1000 or 12 3/8
Answer: First of all, we will add the options.
A. Yes, because 3 inches falls above the maximum value of lengths in the sample.
B. Yes, because the regression equation is based on a random sample.
C. Yes, because the association between length and weight is positive.
D. No, because 3 inches falls above the maximum value of lengths in the sample.
E. No, because there may not be any 3-inch fish of this species in the pond.
The correct option is D.
Step-by-step explanation: It would not be appropriate to use the model to predict the weight of species that is 3 inches long because 3 inches falls above the maximum value of lengths in the sample.
As we can see from the question, the model only accounts for species that are within the range of 0.75 to 1.35 inches in length, and species smaller or larger than that length have not been taken into consideration. Therefore the model can not be used to predict the weights of fishes not with the range accounted for.
Answer:
Step-by-step explanation:
In the normal distribution curve, the mean is in the middle and each line to the left and to the right of that mean represent 1- and 1+ the standard deviation. If our mean is 400, then 400 + 50 = 450; 450 + 50 = 500; 500 + 50 = 550. Going from the mean to the left, we subtract the standard deviation and 400 - 50 = 350; 350 - 50 = 300; 300 - 50 = 250. We are interested in the range that falls between 350 and 450 as a percentage. That range represents the two middle sections, each containing 34% of the data. So the total percentage of response times is 68%. We are looking then for 68% of the 144 emergency response times in town. .68(144) = 97.92 or 98 emergencies that have response times of between 350 and 450 seconds.