Answer:
maximum speed 56 km/h
Explanation:
To apply Newton's second law to this system we create a reference system with the horizontal x-axis and the Vertical y-axis. In this system, normal is the only force that we must decompose
sin 10 = Nx / N
cos 10 = Ny / N
Ny = N cos 10
Nx = N sin 10
Let's develop Newton's equations on each axis
X axis
We include the force of friction towards the center of the curve because the high-speed car has to get out of the curve
Nx + fr = m a
a = v2 / r
fr = mu N
N sin10 + mu N = m v² / r
N (sin10 + mu) = m v² / r
Y Axis
Ny -W = 0
N cos 10 = mg
Let's solve these two equations,
(mg / cos 10) (sin 10 + mu) = m v² / r
g (tan 10 + μ / cos 10) = v² / r
v² = r g (tan 10 + μ / cos 10)
They ask us for the maximum speed
v² = 30.0 9.8 (tan 10+ 0.65 / cos 10)
v² = 294 (0.8364)
v = √(245.9)
v = 15.68 m / s
Let's reduce this to km / h
v = 15.68 m / s (1 km / 1000m) (3600s / 1h)
v = 56.45 km / h
This is the maximum speed so you don't skid
Answer;
B. Increased levels of carbon dioxide, a greenhouse gas, leads to increased phytoplankton growth.
Explanation;
-A combination of warm water, high nutrient levels, and adequate sunlight may cause a harmful algae bloom. These blooms may damage aquatic ecosystems by blocking sunlight and depleting oxygen that other organisms need to survive.
-Algae blooms have been increasing globally, and climate change may be playing a role in the increment. For instance, during the warm summer season or when water is warmer, some harmful types of algae to grow faster than other, more benign varieties.
-Additionally, the warmer surface water also prevents water from mixing vertically, allowing algae to grow thicker and faster.
Answer:
2 × 10⁶
Explanation:
Data provided in the question:
Cavity length, L = 
Oscillation frequency,
= 9.0 × 10¹⁴ Hz
Now,
we know,

here,
c is the speed of light = 3 × 10⁸ m/s
= Wavelength of mode m inside the laser cavity
m is the cavity mode number
Thus,

or
=
× 10⁻⁶
Also,

Therefore,
m ×
× 10⁻⁶ = 2 × 
or
m = 2 × 10⁶
Thank you for posting your question here at brainly. I hope the answer will help. Below are the choices that can be found elsewhere:
<span>A. 1.5 * 10^3 Watts
B. 7.3 * 10^2 Watts
C. 3.5 * 10^2 Watts
D. 2.5 * 10^2 Watts
</span>
<span>Work = force*displacement = 10^2*87 = 8,700 joule
Power = work/time = 8,700/6 = 1.45*10^3 (rounded up to 1.5 kw). The answer is A. </span>
Answer:
The ball will have an upward velocity of 6 m/s at a height of 5.51 m.
Explanation:
Hi there!
The equations of height and velocity of the ball are the following:
y = y0 + v0 · t + 1/2 · g · t²
v = v0 + g · t
Where:
y = height at time t.
y0 = initial height.
v0 = initial velocity.
t = time.
g = acceleration due to gravity (-9.81 m/s² considering the upward direction as positive).
v = velocity of the ball at time t.
Placing the origin at the throwing point, y0 = 0.
Let´s use the equation of velocity to obtain the time at which the velocity is 12.0 m/s / 2 = 6.00 m/s.
v = v0 + g · t
6.00 m/s = 12.0 m/s -9.81 m/s² · t
(6.00 - 12.0)m/s / -9.81 m/s² = t
t = 0.612 s
Now, let´s calculate the height of the baseball at that time:
y = y0 + v0 · t + 1/2 · g · t² (y0 = 0)
y = 12.0 m/s · 0.612 s - 1/2 · 9.81 m/s² · (0.612 s)²
y = 5.51 m
The ball will have an upward velocity of 6 m/s at a height of 5.51 m.
Have a nice day!