Answer:
Combustibility is a measure of how easily a substance bursts into flame, through fire or combustion. This is an important property to consider when a substance is used for construction or is being stored. It is also important in processes that produce combustible substances as a by-product.
Explanation:
Complete Question
The complete question is shown on the first uploaded image
Answer:
The correct option is option 3
Explanation:
From the question we are told that
The diameter of solenoid 1 is 
The length of solenoid 1 is 
The number of turns of solenoid is 
The diameter of solenoid 2 is 
The length of solenoid 2 is 
The number of turns of solenoid 2 is 
Generally the magnetic in a solenoid is mathematically represented as

From this equation we see that


Here C stands for constant
=> 
=> 
=> 
=> 
=> 
=> 
Answer:
a) W_total = 8240 J
, b) W₁ / W₂ = 1.1
Explanation:
In this exercise you are asked to calculate the work that is defined by
W = F. dy
As the container is rising and the force is vertical the scalar product is reduced to the algebraic product.
W = F dy = F Δy
let's apply this formula to our case
a) Let's use Newton's second law to calculate the force in the first y = 5 m
F - W = m a
W = mg
F = m (a + g)
F = 80 (1 + 9.8)
F = 864 N
The work of this force we will call it W1
We look for the force for the final 5 m, since the speed is constant the force must be equal to the weight (a = 0)
F₂ - W = 0
F₂ = W
F₂ = 80 9.8
F₂ = 784 N
The work of this fura we will call them W2
The total work is
W_total = W₁ + W₂
W_total = (F + F₂) y
W_total = (864 + 784) 5
W_total = 8240 J
b) To find the relationship between work with relate (W1) and work with constant speed (W2), let's use
W₁ / W₂ = F y / F₂ y
W₁ / W₂ = 864/784
W₁ / W₂ = 1.1
Answer:
0.1 m
Explanation:
It is given that,
Mass of the object, m = 350 g = 0.35 kg
Spring constant of the spring, k = 5.2 N/m
Amplitude of the oscillation, A = 10 cm = 0.1 m
Frequency of a spring mass system is given by :
Time period:
The time is given, and you want to find the average velocity. To do this, you need to know the distance covered by the driver around the racetrack in that 30 seconds. You divide this by the time, then you will obtain the average velocity in units of, say meters per second.