Answer:
50
Step-by-step explanation:
Steven = 13 marbles
Julio = 13 marbles
Megan has twice the number of marbles as Steven and Julio combined
Megan = 2 (13 + 13) = 2(26) = 52 marbles
Among the options (26, 13, 50, 169, 338), the only reasonable estimate is 50
We need to assign a value for x to check the possible values of y.
1st inequality: y < -0.75x
X = - 1 ; y < -0.75(-1) ; y < 0.75 possible coordinate (-1,0.75) LOCATED AT THE 2ND QUADRANT
X = 0 ; y < -0.75(0) ; y < 0 possible coordinate (0,0) ORIGIN
X = 1 ; y < -0.75(1) ; y < -0.75 possible coordinate (1,-0.75) LOCATED AT THE 4TH QUADRANT
2nd inequality: y < 3x -2
X = -1 ; y < 3(-1) – 2 ; y < -5 possible coordinate (-1,-5) LOCATED AT THE 4TH QUADRANT
X = 0 ; y < 3(0) – 2 ; y < -2 possible coordinate (0,-2) LOCATED AT THE 4TH QUADRANT
X = 1 ; y < 3(1) – 2 ; y <<span> 1 possible coordinate (1,1) LOCATED AT THE 1ST QUADRANT
The actual solution to the system lies on the 4TH QUADRANT.
</span>
Answer:
The answer is explained below
Step-by-step explanation:
STEP 1
Out of 1500 units produced by a company 1,477 are found to be free of a particular type of defect. One needs to rate the performance based on Six Sigma Theory.
STEP 2
Manager can define the performance of a product using defects per million units DPMO metric
DPMO can be find by using
DPMO = Total number of defects in a sample/ No. of opportunities of per error per unit x No. of units * 1,000,000
= 1500 - 1477/ 1 x 1500* 1,000,000
= 23/1500
= 15,333,33
The defect rate of the process can be find by
Defect rate = No. of defects/ No. of units * 100
= 1500 - 1477/1500 * 100
= 23/1500 * 100
= 1.53%
Six Sigma theory focuses on achieving 3.4 defects per million for a certain period of time. However in this, performance of the process is not as good as stated by the manager.
Here's the equation:
0.125(500) + 500
But because it is 30 years:
30(0.125(500)) + 500
3.75(500) + 500
We can make it simpler:
4.75(500)
2375
You will have $2375