Answer:
the magnitude of the work done by the two blocks is the same.
Explanation:
The work done by block a on block b is given by:

where Fa is the force exerted by block a on block b, and d is the distance they cover.
The work done by block b on block a is given by:

where Fb is the force exerted by block b on block a, and d is still the distance they cover.
For Newton's third law, the force exerted by block a on block b is equal to the force exerted by block b on block a, therefore

and so

Answer:
1/9
Explanation:
Sorry, I don't know if this is right, but here is what I did. We are ignoring potential energy because we assume that the student is walking and biking on level ground. Power = W/T, W = Mechanical Energy, or just Kinetic for this case. So
, and
. Ew =
, and Eb =
. Put Ew over Eb. the 1/2's cancel, the m's cancel, and you are left with
. Finally, this simplifies after cutting out the vw^2's to 1/9.
Answer:
3×10^7 m/s or 0.10c (e)
Explanation: If the actual value of the speed of light were to be put into consideration.
Given that the speed of light is c = 3.0×10^8m/s
The alien spaceship is approaching at the rate of 10% of the speed of light.
10% of 3.0×10^8m/s
10/100 × 3.0×10^8m/s
0.1 ×3.0×10^8m/s
3×10^7 m/s. Which is the same thing as 0.1 of c = 0.1×c
Answer: 
Explanation:
In the image attached with this answer are shown the given options from which only one is correct.
The correct expression is:

Because, if we derive velocity
with respect to time
we will have acceleration
, hence:

Where
is the mass with units of kilograms (
) and
with units of meter per square seconds
, having as a result 
The other expressions are incorrect, let’s prove it:
This result has units of
This result has units of
This result has units of
and
is a constant
This result has units of
This result has units of
This result has units of
and
is a constant
This result has units of
and
is a constant
because
is a constant in this derivation respect to
This result has units of
and
is a constant
Answer:
The flux through the surface of the cube is 
Solution:
As per the question:
Edge of the cube, a = 8.0 cm = 
Volume Charge density, 
Now,
To calculate the electric flux:
(1)
where
= electric flux
= permittivity of free space
Volume Charge density for the given case is given by the formula:
(2)
Volume of cube, 
Thus

Thus from eqn (2), the total charge is given by:


Now, substitute the value of 'q' in eqn (1):
