In order to answer this exercise you need to use the formulas
S = Vo*t + (1/2)*a*t^2
Vf = Vo + at
The data will be given as
Vf = final velocity = ?
Vo = initial velocity = 1.4 m/s
a = acceleration = 0.20 m/s^2
s = displacement = 100m
And now you do the following:
100 = 1.4t + (1/2)*0.2*t^2
t = 25.388s
and
Vf = 1.4 + 0.2(25.388)
Vf = 6.5 m/s
So the answer you are looking for is 6.5 m/s
Answer:
a) 2.5m/s
b) 0.91m/s
c) 0m/s
Explanation:
Average velocity can be said to be the ratio of the displacement with respect to time.
Average speed on the other hand is the ratio of distance in relation to time
Thus, to get the average velocity for the first half of the swim
V(average) = displacement of first trip/time taken on the trip
V(average) = 50/20
V(average) = 2.5m/s
Average velocity for the second half of the swim will be calculated in like manner, thus,
V(average) = 50/55
V(average) = 0.91m/s
Average velocity for the round trip will then be
V(average) = 0/75, [50+25]
V(average) = 0m/s
Answer:
Explanation:
i = Imax sin2πft
given i = 180 , Imax = 200 , f = 50 , t = ?
Put the give values in the equation above
180 = 200 sin 2πft
sin 2πft = .9
sin2π x 50t = .9
sin 360 x 50 t = sin ( 360n + 64 )
360 x 50 t = 360n + 64
360 x 50 t = 64 , ( putting n = 0 for least value of t )
18000 t = 64
t = 3.55 ms .
Answer:
C. Both reach the bottom at the same time.
Explanation:
For a rolling object down an inclined plane , the acceleration is given below
a = g sinθ / (1 + k² / r² )
θ is angle of inclination , k is radius of gyration , r is radius of the cylinder
For cylindrical object
k² / r² = 1/2
acceleration = g sinθ /( 1 + 1/2 )
= 2 g sinθ / 3
Since it does not depend upon either mass or radius , acceleration of both the cylinder will be equal . Hence they will reach the bottom simultaneously.
We are given information:

If we apply Newton's second law we can calculate acceleration:
F = m * a
a = F / m
a = 25000 / 10000
a = 2.5 m/s^2
Now we can use this information to calculate change of speed.
a = v / t
v = a * t
v = 2.5 * 120
v = 300 m/s
Force is being applied in direction that is opposite to a direction in which space craft is moving. This means that final speed will be reduced.
v = 1200 - 300
v = 900 m/s
Formula for momentum is:
p = m * v
Initial momentum:
p = 10000 * 1200
p = 12 000 000
p = 12 *10^6 kg*m/s
Final momentum:
p = 10000 * 900
p = 9 000 000
p = 9 *10^6 kg*m/s