Answer:
E = 1.04*10⁻¹ N/C
Explanation:
Assuming no other forces acting on the proton than the electric field, as this is uniform, we can calculate the acceleration of the proton, with the following kinematic equation:

As the proton is coming at rest after travelling 0.200 m to the right, vf = 0, and x = 0.200 m.
Replacing this values in the equation above, we can solve for a, as follows:

According to Newton´s 2nd Law, and applying the definition of an electric field, we can say the following:
F = mp*a = q*E
For a proton, we have the following values:
mp = 1.67*10⁻²⁷ kg
q = e = 1.6*10⁻¹⁹ C
So, we can solve for E (in magnitude) , as follows:

⇒ E = 1.04*10⁻¹ N/C
Answer:
4 (please see the attached file)
Explanation:
While the angular speed (counterclockwise) remained constant, the angular acceleration was just zero.
So, the only force acting on the bug (parallel to the surface) was the centripetal force, producing a centripetal acceleration directed towards the center of the disk.
When the turntable started to spin faster and faster, this caused a change in the angular speed, represented by the appearance of an angular acceleration α.
This acceleration is related with the tangential acceleration, by this expression:
at = α*r
This acceleration, tangent to the disk (aiming in the same direction of the movement, which is counterclockwise, as showed in the pictures) adds vectorially with the centripetal force, giving a resultant like the one showed in the sketch Nº 4.
The x-component of the normal force is equal to <u>1706.45 N.</u>
Why?
To solve the problem, and since there is no additional information, we can safely assume that the x-axis is parallalel to the hill surface and the y-axis is perpendicular to the x-axis. Knowing that, we can calculate the components of the normal force (or weight for this case), using the following formulas:

Now, using the given information, we have:

Calculating, we have:


Hence, we have that the x-component of the normal force is equal to <u>1706.45 N.</u>
Have a nice day!
Answer:
Explanation:
moment of inertia of each blade which is similar to rod rotating about its one end
= 1/3 ml²
moment of inertia of 3 blades = ml²
= 5500 x 46²
I = 11638 x 10³ kg m²
angular velocity = 2πn where n is rotation per second
n = 11 / 60
angular velocity = 2π x 11/60
= 1.1513 rad /s
angular momentum
= moment of inertia x angular velocity
= 11638 x 10³ x 1.1513
= 13399 x 10³ kg m² per second.