Answer: The unit digit of the quotient is 1.
Step-by-step explanation:
Since the number 2^1993 + 3^1993 is a multiple of 5, this means that no matter the value of the answer to the equation, the last digit will be 5 (we call the last digit of any number its "unit digit").
Since the unit digit of 2^1993 + 3^1993 is 5, if the unit digit is divided by 5 i.e 5/5, it will give us 1.
We will only consider the last digits of the multiple of 5 as our numerator
solution:
The probability mass function for binomial distribution is,
Where,
X=0,1,2,3,…..; q=1-p
find the probability that (p∧ ≤ 0.06) , substitute the values of sample units (n) , and the probability of nonconformities (p) in the probability mass function of binomial distribution.
Consider x to be the number of non-conformities. It follows a binomial distribution with n being 50 and p being 0.03. That is,
binomial (50,0.02)
Also, the estimate of the true probability is,
p∧ = x/50
The probability mass function for binomial distribution is,
Where,
X=0,1,2,3,…..; q=1-p
The calculation is obtained as
P(p^ ≤ 0.06) = p(x/20 ≤ 0.06)
= 50cx ₓ (0.03)x ₓ (1-0.03)50-x
= (50c0 ₓ (0.03)0 ₓ (1-0.03)50-0 + 50c1(0.03)1 ₓ (1-0.03)50-1 + 50c2 ₓ (0.03)2 ₓ (1-0.03)50-2 +50c3 ₓ (0.03)3 ₓ (1- 0.03)50-3 )
=( ₓ (0.03)0 ₓ (1-0.03)50-0 + ₓ (0.03)1 ₓ (1-0.03)50-1 + ₓ (0.03)2 ₓ (1-0.03)50-2 ₓ (0.03)3 ₓ (1-0.03)50-3 )
Answer:
$11,728
Step-by-step explanation:
Twice a year, for 4 years is 8 times
516×8 = 4128
Yearly for 4 years is 4 times
700×4 = 2800
Every month for 4 years is 48 times
100×48 = 4800
Minimum expenditure:
4128 + 2800 + 4800 = $11,728
It is given in the question that,
George took a nonstop flight from Dallas to Los Angeles, a total flight distance of 1,233 miles. The plane flew at a speed of 460 miles per hour for the first 75 minutes of the flight and at a speed of 439 miles per hour for the remainder of the flight.
Let for x hours, the flight travelled with a speed of 439 miles per hour .
So we have,


And to convert it in minutes, we have to multiply by 60. And on doing so, we will get
