They have different accelerations because of their masses. According to Newton's Second Law, an objects acceleration is inversely proportional to its mass. Therefore the object with the larger mass, in this case the gun, will have a smaller acceleration. In the same way, the less massive object, being the bullet, will have a higher acceleration.
Hope this helps :)
Answer:
The centripetal force acting on the skater is <u>48.32 N.</u>
Explanation:
Given:
Radius of circular track is, 
Tangential speed of the skater is, 
Mass of the skater is, 
We are asked to find the centripetal force acting on the skater.
We know that, when an object is under circular motion, the force acting on the object is directly proportional to the mass and square of tangential speed and inversely proportional to the radius of the circular path. This force is called centripetal force.
Centripetal force acting on the skater is given as:

Now, plug in the given values of the known quantities and solve for centripetal force,
. This gives,

Therefore, the centripetal force acting on the skater is 48.32 N.
The best and most correct answer among the choices provided by the question is the fourth choice.
The best people for advising is <span>the government agency that regulates these types of chemicals.</span>
I hope my answer has come to your help. God bless and have a nice day ahead!
Based on the given values above, in order for us to get the answer, we need to convert the units first. So in 1 kilogram, there is 1,000,000 micrograms. In this case, 1.6 kilograms is 1,600,000 micrograms. For the week to seconds, 1 week is equivalent to 604,800 seconds. Therefore, 1,600,000 micrograms/604,800 seconds. So we are going to simplify this. So it would be 2.65<span>µg/s. Hope this answers your question.</span>