Answer:
The magnitude of the resultant acceleration is 2.2 
Explanation:
Mass (m) of the sailboat = 2000 kg
Force acting on the sailboat due to ocean tide is
= 3000N
Eastwards means takes place along the positive x direction
Then
= 3000N and
= 0
Wind Force acting on the Sailboat is
= 6000N directed towards the northwest that means at an angle 45 degree above the negative x axis
Then
= -(6000N) cos 45 degree = -4242.6 N
= (6000N) cos 45 degree = 4242.6 N
Hence , the net force acting on the sailboat in x direction is

= - 3000 N + 4242.6 N
= - 3000 N +4242.6 N
= 1242.6N
Net Force acting on the sailboat in y direction is

= 0+ 4242.6N
= 4242.6N
The magnitude of the resultant force =
Using pythagorean theorm of 1243 N and 4243 N



4420.8 N
F = ma


=2.2 
The gravitational force between two masses m₁ and m₂ is

where
G = 6.67408 x 10⁻¹¹ m³/(kg-s²), the gravitational constant
d = distance between the masses.
Given:
F = 1.5 x 10⁻¹⁰ N
m₁ = 0.50 kg
m₂ = 0.1 kg
Therefore
1.5 x 10⁻¹⁰ N = (6.67408 x 10⁻¹¹ m³/(kg-s²))*[(0.5*0.1)/(d m)²]
d² = [(6.67408x10⁻¹¹)*(0.5*0.1)]/1.5x10⁻¹⁰
= 0.0222
d = 0.1492 m = 149.2 mm
Answer: 149.2 mm
consider the motion of con from top to bottom
Y = vertical displacement = 1000 m
a = acceleration due to gravity = 9.8 m/s²
v₀ = initial velocity at the top = 0 m/s
v = final velocity at the bottom = ?
using the kinematics equation
v² = v²₀ + 2 aY
v² = 0² + 2 (9.8) (1000)
v = 140 m/s
t = time taken to hit the ground
Using the equation
v = v₀ + at
140 = 0 + 9.8 t
t = 14.3 sec
Answer: The weight of a 72.0 kg astronaut on the Moon is 117.36 N.
Explanation:
Mass of the astronaut on the moon , m= 72 kg
Acceleration due to gravity on moon,g = 1.63 
According to Newton second law of motion: F = ma
This will changes to = Weight = mass × g

The weight of a 72.0 kg astronaut on the Moon is 117.36 N.
Flow rate = 220*0.355 l/m = 78.1 l/min = 1.3 l/s = 0.0013 m^3/s
Point 2:
A2= 8 cm^2 = 0.0008 m^2
V2 = Flow rate/A2 = 0.0013/0.0008 = 1.625 m/s
P1 = 152 kPa = 152000 Pa
Point 1:
A1 = 2 cm^2 = 0.0002 m^2
V1 = Flow rate/A1 = 0.0013/0.0002 = 6.5 m/s
P1 = ?
Height = 1.35 m
Applying Bernoulli principle;
P2+1/2*V2^2/density = P1+1/2*V1^2/density +density*gravitational acceleration*height
=>152000+0.5*1.625^2*1000=P1+0.5*6.5^2*1000+1000*9.81*1.35
=> 153320.31 = P1 + 34368.5
=> P1 = 1533210.31-34368.5 = 118951.81 Pa = 118.95 kPa