answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
guapka [62]
2 years ago
9

Select all that apply. Which of the following would increase the conductivity of a connecting wire?

Physics
2 answers:
lara31 [8.8K]2 years ago
7 0
It would be length of the wire
wel2 years ago
7 0

Answer:

switch from steel wire to gold wire

Explanation:

increase the length of the wire

You might be interested in
A woman who weighs 500 N stands on an 8.0-m-long board that weighs 100 N. The board is supported at each end. The support force
aniked [119]

Answer:

The woman's distance from the right end is 1.6m = (8-6.4)m.

The principles of moments about a point or axis running through a point and summation of forces have been used to calculate the required variable.

Principle of moments: the sun of clockwise moments must be equal to the sun of anticlockwise moments.

Also the sun of upward forces must be equal to the sun of downward forces.

Theses are the conditions for static equilibrium.

Explanation:

The step by step solution can be found in the attachment below.

Thank you for reading this solution and I hope it is helpful to you.

8 0
2 years ago
A mass m slides down a frictionless ramp and approaches a frictionless loop with radius R. There is a section of the track with
Lana71 [14]

Answer:

   h = 2 R (1 +μ)

Explanation:

This exercise must be solved in parts, first let us know how fast you must reach the curl to stay in the

let's use the mechanical energy conservation agreement

starting point. Lower, just at the curl

       Em₀ = K = ½ m v₁²

final point. Highest point of the curl

        Em_{f} = U = m g y

Find the height y = 2R

      Em₀ = Em_{f}

      ½ m v₁² = m g 2R

       v₁ = √ 4 gR

Any speed greater than this the body remains in the loop.

In the second part we look for the speed that must have when arriving at the part with friction, we use Newton's second law

X axis

    -fr = m a                      (1)

Y Axis  

      N - W = 0

      N = mg

the friction force has the formula

     fr = μ  N

     fr = μ m g

    we substitute 1

    - μ mg = m a

     a = - μ g

having the acceleration, we can use the kinematic relations

    v² = v₀² - 2 a x

    v₀² = v² + 2 a x

the length of this zone is x = 2R

    let's calculate

     v₀ = √ (4 gR + 2 μ g 2R)

     v₀ = √4gR( 1 + μ)

this is the speed so you must reach the area with fricticon

finally have the third part we use energy conservation

starting point. Highest on the ramp without rubbing

     Em₀ = U = m g h

final point. Just before reaching the area with rubbing

     Em_{f} = K = ½ m v₀²

      Em₀ = Em_{f}

     mgh = ½ m 4gR(1 + μ)

       h = ½ 4R (1+ μ)

       h = 2 R (1 +μ)

7 0
2 years ago
Suppose two astronauts on a spacewalk are floating motionless in space, 3.0 m apart. Astronaut B tosses a 15.0 kg IMAX camera to
marta [7]

Answer:

\frac{ 112.5}{15+m_{A}}=v_{f}

(we need the mass of the astronaut A)

Explanation:

We can solve this by using the conservation law of the linear momentum P. First we need to represent every mass as a particle. Also we can simplify this system of particles by considering only the astronaut A with an initial speed v_{iA} of 0 m/s and a mass m_{A} and the IMAX camera with an initial speed v_{ic} of 7.5 m/s and a mass m_{c} of 15.0 kg.

The law of conservation says that the linear momentum P (the sum of the products between all masses and its speeds) is constant in time. The equation for this is:

P_{i}=p_{ic}+p_{iA}\\P_{i}=m_{c}v_{ic}+m_{A} v_{iA}\\P_{i}=15*7.5 + m_{A}*0\\P_{i}=112.5 \frac{kg.m}{s}

By the law of conservation we know that P_{i} =P_{f}

For P_{f} (final linear momentum) we need to treat the collision as a plastic one (the two particles stick together after the encounter).

So:

P_{i} =P_{f}=112.5\\

112.5=(m_{c}+m_{A})v_{f}\\\frac{ 112.5}{m_{c}+m_{A}}=v_{f}\\\frac{ 112.5}{15+m_{A}}=v_{f}

3 0
2 years ago
A zebra runs across a field at a constant speed of 14m/s how far does the zebra go in 8 seconds?
Ratling [72]

Answer:

112m/s

Explanation:

14x8=112 therefore meaning the zebra would run 112m/s

3 0
2 years ago
Read 2 more answers
A ping-pong ball weighs 0.025 N. The ball is placed inside a cup that sits on top of a vertical spring. If the spring is compres
kondor19780726 [428]

Answer:

Explanation:

The energy stored in the spring is used to throw the ball upwards . Let the height reached be h

stored energy of spring = 1/2 k y² , k is spring constant and y is compression created in the spring

stored energy of spring = potential energy of the ball

1/2 k y² = mgh , m is mass of the ball , h is height attained by ball

.5 k x .055² = .025  x 2.84

.0015125 k = .071

k = .071 / .0015125

= 46.9 N / m .

4 0
2 years ago
Other questions:
  • You do 174 J of work while pulling your sister back on a swing, whose chain is 5.10 m long, until the swing makes an angle of 32
    8·1 answer
  • You throw a beanbag in the air and catch it 2.2 s later at the same place at which you threw it. How high did it go? What was th
    9·1 answer
  • The Earth has a magnetic field around it, which is generated by its molten core. This magnetic field exerts a force on compass d
    5·2 answers
  • A transverse wave on a string has an amplitude A. A tiny spot on the string is colored red. As one cycle of the wave passes by,
    7·1 answer
  • At a fixed depth within a fluid at rest, the pressure pushing upward is
    10·1 answer
  • The Bohr model of the hydrogen atom pictures the electron as a tiny particle moving in a circular orbit about a stationary proto
    6·1 answer
  • Short wavelengths, from high-pitched sounds, cause displacement of the basilar membrane near the oval window. true false
    15·2 answers
  • A 48.0-kg astronaut is in space, far from any objects that would exert a significant gravitational force on him. He would like t
    9·1 answer
  • a horse gallops a distance of 60 meters in 15 seconds. then, he stops to eat some grass for 20 seconds. next, he trots for 25 se
    5·1 answer
  • Picture a long, straight corridor running east-west, with a water fountain located somewhere along it. Starting from the west en
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!