answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kirill [66]
2 years ago
11

HELP !! Maura is deciding which hose to use to water her outdoor plants. Maura noticed that the water coming out of her garden h

oses follows a parabolic path.
When Maura uses her green garden hose the greatest height the water reaches is 8 feet, and it lands on the plants 10 feet from where she is standing. Both the nozzle of the hose and the top of the flowers are 4 feet above the ground.

Maura has determined that when she has the water on full blast, the water from the red hose follows the path y= -(x-3)^2+7.

a. Which hose will throw the water higher ?

b. Write an equation that models the path of the water from Maura's green hose.

c. What domain and range make sense for the water from Majra's green hose?

Physics
1 answer:
MA_775_DIABLO [31]2 years ago
3 0
THE GREEN HOSE:
Define the (x,y) coordinate at a height of 4 feet up from the ground to match where Majra is holding the green hose.
This means that the equation for the green hose is of the form
y = a(x - h)² + 4          (1)

Because water from the green hose lands on the ground 10 feet from where Majra is standing, therefore
y(10) = -4                    (2)

Because the curve passes through (0,0), therefore
ah² + 4 = 0
ah² = - 4                     (3)

To satisfy (2), obtain
a(10 - h)² + 4 = -4
a(10 - h)² = - 8            (4)

Divide (3) by (4).
h²/(10-h)² = 1/2
2h² = (10 - h)² = 100 - 20h + h²
h² + 20h - 100 = 0             

Solve with the quadratic formula.
x = 0.5[-20 +/- √(8400)] = 4.142, - 24.142
Reject the negative solution.
The vertex is at (4.142, 4).

From (3), obtain
a = -4/4.142² = -0.2332

The equation for the green hose is
y = 0.2332(x - 4.142)² + 4

THE RED HOSE
The red hose has a vertex at (3,7), according to the equation y = -(x-3)² + 7.

A graph of y(x) for both hoses is shown in the attached figure.

Answers:
a. The red hose will throw the water higher. 

b. The equation for the green hose is
     y = -0.2332(x - 4.124)² + 4,
     with the origin at a height of 4 feet above ground level.

c. The domain for the green hose that makes sense is 0 ≤ x ≤ 10 feet.
     The corresponding range is -4 ≤ y ≤ 4 feet.


You might be interested in
Cylinder A is moving downward with a velocity of 3 m/s when the brake is suddenly applied to the drum. Knowing that the cylinder
Xelga [282]

Answer:

Incomplete question

Check attachment for the given diagram

Explanation:

Given that,

Initial Velocity of drum

u=3m/s

Distance travelled before coming to rest is 6m

Since it comes to rest, then, the final velocity is 0m/s

v=3m/s

Using equation of motion to calculate the linear acceleration or tangential acceleration

v²=u²+2as

0²=3²+2×a×6

0=9+12a

12a=-9

Then, a=-9/12

a=-0.75m/s²

The negative sign shows that the cylinder is decelerating.

Then, a=0.75m/s²

So, using the relationship between linear acceleration and angular acceleration.

a=αr

Where

a is linear acceleration

α is angular acceleration

And r is radius

α=a/r

From the diagram r=250mm=0.25m

Then,

α=0.75/0.25

α =3rad/sec²

The angular acceleration is =3rad/s²

b. Time take to come to rest

Using equation of motion

v=u+at

0=3-0.75t

0.75t=3

Then, t=3/0.75

t=4 secs

The time take to come to rest is 4s

7 0
2 years ago
Come si compongono due forze che agiscono in diversi punti di un corpo rigido? Oof
bagirrra123 [75]

Answer:

Explanation:

I dont know if this will help but A two force member is a body that has forces (and only forces, no moments) acting on it in only two locations. In order to have a two force member in static equilibrium, the net force at each location must be equal, opposite, and collinear.

7 0
2 years ago
A charged box (m=445 g, ????=+2.50 μC) is placed on a frictionless incline plane. Another charged box (????=+75.0 μC) is fixed i
victus00 [196]

The concept required to perform this exercise is given by the coulomb law.

The force expressed according to this law is given by

F= \frac{kqQ}{r^2}

Where,

k = 8.99 * 10^9 N m^2 / C^2.

q = charges of the objects

r= distance/radius

Our values are previously given, so

q= 2.5*10^{-6}C\\Q= 75*10^{-6}C\\r=0.59

Replacing,

F=\frac{kqQ}{r^2}

F= \frac{(8.99 x 10^9)(2.5*10^{-6})(75*10^{-6})}{0.59^2}

F= 4.8423N

The force acting on the block are given by,

F-mgsin\theta = ma

a = \frac{F-mgsin\theta}{m}

a = \frac{4.8423-(0.445)(9.8)sin(35)}{0.445}a = 10.31m/s^2

Therefore the box is accelerated upward.

3 0
2 years ago
(HELP!!! 30 pts if answered right. )What formula gives the strength of an electric field, E, at a distance from a known source c
umka2103 [35]

Answer:

E=\frac{k\,Q}{d^2}

Explanation:

The strength of an electric field E produced by a single charge Q at a distance d from it is given by the formula: E=\frac{k\,Q}{d^2}, where K represents the Coulomb constant.

Since the electric field E is derived from the Coulomb Force per unit charge using a positive test charge, the field's units will be in units of Newtons/Coulomb, and be the formula for the Coulomb electric force between to charges (Q1 and Q2),

F_C=k\frac{Q_1\,Q_2}{d^2}

but modified with only one charge showing in the numerator of the expression.

8 0
2 years ago
Keisha looks out the window from a tall building at her friend Monique standing on the ground, 8.3 m away from the side of the b
Salsk061 [2.6K]

Answer:

Explanation:

GIVEN DATA:

Distance between keisha and her friend 8.3 m

angle made by keisha toside building 30 degree

height of her friend monique is 1.5 m

from the figure

\Delta ACB

tan 30 = \frac{8.3}{h}

h= \frac{8.3}{tan 30} = 14.376 m

therefore

height of keisha is = h  + 1.5 m

                               = 14.376 + 1.5

= 15.876 \simeq 16 m

therefore option c is correct

5 0
2 years ago
Other questions:
  • A race car exerts 19,454 n while the car travels at a constant speed of 201 mph, 91.36 m/s.what is the mass of the car?
    12·2 answers
  • Starting with only the Balmer series light (visible light), how could we ensure that the solar panels generate a current that Ma
    14·2 answers
  • Some fuel cells are powered by hydrogen. Scientists are looking into the decomposition of water (H2O) to make hydrogen fuel with
    13·2 answers
  • An 8.0-kg history textbook is placed on a 1.25-m high desk. How large is the gravitational potential energy of the textbook-Eart
    11·2 answers
  • Tom has built a large slingshot, but it is not working quite right. He thinks he can model the slingshot like an ideal spring wi
    15·1 answer
  • A system contains a perfectly elastic spring, with an unstretched length of 20 cm and a spring constant of 4 N/cm.
    6·1 answer
  • A meteoroid, heading straight for Earth, has a speed of 14.8 km/s relative to the center of Earth as it crosses our moon's orbit
    5·1 answer
  • 8. The fact that voltage can be created by exerting force on a crystal is used in which type of sensor?
    5·1 answer
  • You live on a planet far from ours. "Based on extensive communication with a physicist on earth", you have determined that all l
    6·1 answer
  • Vinny is on a motorcycle at rest, 200 m away from a ramp that jumps over a gully. Calculate the minimum constant acceleration Vi
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!