Complete Question
The diagram for this question is shown on the first uploaded image
Answer:
The value is 
Explanation:
From the question we are told that
The length of the stretcher is 
The weight of the stretcher is 
The weight for Wayne is 
The distance of center of gravity for Wayne from Chris is 
Generally taking moment about the first end where Chris is
=> upward moment
Here
is the force applied by Jamie
Generally taking moment about the second end where Jamie is
=> downward moment
Generally at equilibrium , the upward moment is equal to the downward moment

=> 
=> 
Answer:
t = 6,485 s
, t_step = 25.94 s
the elephant gives 2.3 step very minute
Explanation:
Let's approximate this system to a simple pendulum that has angular velocity
w = √L / g
Angular velocity and period are related
w = 2π / T
T = 2π √g / L
Let's find the period
T = 2π √9.8 / 2.3
T = 12.97 s
Stride time is
t = T / 2
t = 12.97 / 2
t = 6,485 s
Frequency is inversely proportional to period
f = 1 / t
f = 1 / 6,485
f = 0.15 Hz
Since the elephant has 4 legs and each uses a time t, the total time for one step is
t_step = 4 t
t_step = 4 6.485
t_step = 25.94 s
f_step = 1/t_step =0.0385 s-1
Now let's use a proportion rule to find the number of steps in 60 s
#_step = 60 / t_step
#__step = 60 / 25.94
#_step = 2.3 steps
So the elephant gives 2.3 step very minute
If I remember it correctly, heat capacity is inversely proportional to mass so the answer is:
The heat capacity of an object depends in part on its a. mass
Answer:
<em>Entropy Change = 0.559 Times</em>
Explanation:
Entropy change is determined by the change in the micro-states of a system. As we know that the micro-states are the same as measure of disorderness between initial and final states, that's the the amount of change in micro-states determine how much of entropy has changed in the system.
Answer:
Explanation:
Let L be the length of the wire.
velocity of pulse wave v = L / 24.7 x 10⁻³ = 40.48 L m /s
mass per unit length of the wire m = 14.5 x 10⁻⁶ x 10⁻³ / 2 x 10⁻² kg / m
m = 7.25 x 10⁻⁷ kg / m
Tension in the wire = Mg , M is mass hanged from lower end.
= .4 x 9.8
= 3.92 N
expression for velocity of wave in the wire
, T is tension in the wire , m is mass per unit length of wire .
40.48 L = 
1638.63 L² = 3.92 / (7.25 x 10⁻⁷)
L² = 3.92 x 10⁷ / (7.25 x 1638.63 )
L² = 3299.64
L = 57.44 m /s