Answer:
The distance of separation is 
Explanation:
The mass of the each ball is 
The negative charge on each ball is 
Now we are told that the lower ball is restrained from moving this implies that the net force acting on it is zero
Hence the gravitational force acting on the lower ball is equivalent to the electrostatic force i.e

=> 
here k the the coulomb's constant with a value 
So
![0.01 * 9.8 = \frac{ 9*10^9 *[1*10^{-6} * 1*10^{-6}]}{d}](https://tex.z-dn.net/?f=0.01%20%2A%209.8%20%20%3D%20%20%5Cfrac%7B%209%2A10%5E9%20%2A%5B1%2A10%5E%7B-6%7D%20%2A%201%2A10%5E%7B-6%7D%5D%7D%7Bd%7D)

Answer:
275 kPa
Explanation:
mass of the gas=m=1.5 kg
initial volume if the gas=V₁=0.04 m³
initial pressure of the gas= P₁=550 kPa
as the condition is given final volume is double the initial volume
V₂=final volume
V₂=2 V₁
As the temperature is constant
T₁=T₂=T
=
putting the values in the equation.
=
P₂=
P₂=
P₂=275 kPa
So the final pressure of the gas is 275 kPa.
Answer: Neither Sandra nor Marissa will be in her THR zone.
Explanation:
1) Actual pulse of both Sandra and Marissa : 144 bpm
2) Decrease of 20 bpm ⇒ 144 bpm - 20 bpm = 124 bpm
3) Sandra's TRH is in the range 135 - 172 bpm.
Since 124 < 135, she will be below the range.
4) Marissa's TRH range is 143 - 176 bpm.
Since, 124 < 143, she is below the range
In conlusion, neither Sandra nor Marissa will be in her THR zone.
Your answer is C.
hope this helps!
Answer:
It will neither translate in the opposite direction nor .rotate so as to be at right angles, it will also neither rotate so as to be vertical direction