Answer:
18.5 m/s
Explanation:
On a horizontal curve, the frictional force provides the centripetal force that keeps the car in circular motion:

where
is the coefficient of static friction between the tires and the road
m is the mass of the car
g is the gravitational acceleration
v is the speed of the car
r is the radius of the curve
Re-arranging the equation,

And by substituting the data of the problem, we find the speed at which the car begins to skid:

Given:
Distance = 50 yard = 45.72 meter
Speed = 40 km/hr = 11.11 m/s
To find:
Time required by ball to reach the receiver = ?
Formula used:
speed = 
Solution:
The speed of the ball is given by,
speed = 
Thus,
Time = 
Distance = 50 yard = 45.72 meter
Speed = 40 km/hr = 11.11 m/s
Time = 4.12 second
Hence, ball reaches the receiver in 4.12 second.
1) Focal length
We can find the focal length of the mirror by using the mirror equation:

(1)
where
f is the focal length

is the distance of the object from the mirror

is the distance of the image from the mirror
In this case,

, while

(the distance of the image should be taken as negative, because the image is to the right (behind) of the mirror, so it is virtual). If we use these data inside (1), we find the focal length of the mirror:

from which we find

2) The mirror is convex: in fact, for the sign convention, a concave mirror has positive focal length while a convex mirror has negative focal length. In this case, the focal length is negative, so the mirror is convex.
3) The image is virtual, because it is behind the mirror and in fact we have taken its distance from the mirror as negative.
4) The radius of curvature of a mirror is twice its focal length, so for the mirror in our problem the radius of curvature is:
Answer:
<h2>5.6kW</h2>
Explanation:
Step one:
given
mass m= 24kg
distance moved= 6m
time taken= 4seconds
Step two:
Required
power
but work done is the force applied at a distance, and the power is the work done time the time taken
Work done= F*D
F=mg
W= mg*D
W=24*9.81*6
W=1412.6J
Power P= work * time
P=1412.6*4
p=5650.5W
P=5.6kW
Answer:
Explanation:
Analysis of structure gives
a=gsinθ−μkgcosθ
Notice that all the expression are right but we want to know of we can simplify the expression further.
We want to analyse if we can still further simplify the expression,
Inspecting the Right hand side of the equation, we notice that the acceleration due to gravity is common to both side, so we can bring it out i.e.
So option a is wrong because the expression can be simplified further to
a=g(sinθ−μkcosθ)
Option b is right and the best option.
Since we are given that, g=9.8m/s²
We can as well substitute that to option a
So we will have
a=9.8metre/second²(sinθ−μkcosθ)
Also option C is correct but it is not best inserting the values of g directly without simplifying the expression first
So it will have been the best option if it was written as
a=9.8metre/second²(sinθ−μkcosθ)
So the best option is B.