Answer:
2.63 Hz
Explanation:
m = mass of the object = 8.0 kg
x = stretch in the spring = 3.6 cm = 0.036 m
k = spring constant of the spring
using equilibrium of force
Spring force = weight of object
k x = m g
k (0.036) = (8) (9.8)
k = 2177.78 N/m
frequency of oscillation is given as


= 2.63 Hz
Answer: Thermal comductivity (K) is 3.964x 10 ^-3 W/m.k
Explanation:
Thermal comductivity K = QL/A∆T
Q= Amount of heat transferred through the material in watts = 75W
L= Distance between two isothermal planes = 0.740mm
A= Area of the surface in square metres = 2m^2
∆T= Temperature change = (37-30) °C.
Solving this : K =( 75 x 0.740 x 10^-3)/ 2 x (37-30)
K = 3.964x 10 ^-3 W/m.k
Answer:

Explanation:
given data:
wavelength \lambda = 708nm = 708*10^{-9} m
using the following relation:

according to the given information
second and third dark fringe is at same location. so






Answer:
Part a) When collision is perfectly inelastic

Part b) When collision is perfectly elastic

Explanation:
Part a)
As we know that collision is perfectly inelastic
so here we will have

so we have

now we know that in order to complete the circle we will have


now we have

Part b)
Now we know that collision is perfectly elastic
so we will have

now we have

