Answer:
b) +2 and +3.
Explanation:
Hello,
In this case, given the molecular formulas:

And:

We can relate the subscripts with the oxidation states by knowing that they are crossed when the compound is formed, for that reason, we notice that oxygen oxidation state should be -2 for both cases and the oxidation state of X in the first formula must be +2 since both X and O has one as their subscript as they were simplified:

Moreover, for the second case the oxidation state of X should be +3 in order to obtain 3 as the subscript of oxygen:

Thus, answer is b)+2 and +3
Best regards.
Answer:
PH₂ = 0.2 atm
C) About 0.20atm, because H2 comprises 20% of the total number of moles of gas.
Explanation:
To determine the partial pressure of hydrogen gas (H2) in the mixture,
Partial pressure H₂ = Ptotal * xH₂
xH₂ = Mole fraction of H₂ = ∩H₂ / ( ∩H₂ + ∩O₂ + ∩N₂)
xH₂ = 0.01 / (0.01 + 0.015 + 0.025)
xH₂ = 0.01/0.05
xH₂ = 0.2
therefore
PH₂ = pT * xH₂
PH₂ = 1.0 atm * 0.2
PH₂ = 0.2 atm
so the correct option is C) About 0.20atm, because H2 comprises 20% of the total number of moles of gas.
Answer:
Option D is correct.
H₂O + CO₂ → H₂CO₃
Explanation:
First of all we will get to know what law of conservation of mass states.
According to this law, mass can neither be created nor destroyed in a chemical equation.
This law was given by French chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
Example:
6CO₂ + 6H₂O + energy → C₆H₁₂O₆ + 6O₂
there are six carbon atoms, eighteen oxygen atoms and twelve hydrogen atoms on the both side of equation so this reaction followed the law of conservation of mass.
Now we will apply this law to given chemical equations:
A) H₂ + O₂ → H₂O
There are two hydrogen and two oxygen atoms present on left side while on right side only one oxygen and two hydrogen atoms are present so mass in not conserved. This equation not follow the law of conservation of mass.
B) Mg + HCl → H₂ + MgCl₂
In this equation one Mg, one H and one Cl atoms are present on left side while on right side two hydrogen, one Mg and two chlorine atoms are present. This equation also not follow the law of conservation of mass.
C) KClO₃ → KCl + O₂
There are one K, one Cl and three O atoms are present on left side of chemical equation while on right side one K one Cl and two oxygen atoms are present. This equation also not following the law of conservation of mass.
D) H₂O + CO₂ → H₂CO₃
There are two hydrogen, one carbon and three oxygen atoms are present on both side of equation thus, mass remain conserved. Thus is correct option.
Answer:
Is not possible to make a buffer near of 7.
Optimal pH for sulfate‑based buffers is 2.
Explanation:
The dissociations of H₂SO₄ are:
H₂SO₄ ⇄ H⁺ + HSO₄⁻ pka₁ = -10
HSO₄⁻ ⇄ H⁺ + SO₄²⁻ pka₂ = 2.
The buffering capacity is pka±1. That means that for H₂SO₄ the buffering capacity is in pH's between <em>-11 and -9 and between 1 and 3</em>, having in mind that pH's<0 are not useful. For that reason, <em>is not possible to make a buffer near of 7.</em>
The optimal pH for sulfate‑based buffers is when pka=pH, that means that optimal pH is <em>2.</em>
<em />
I hope it helps!
Answer:
For a substance to classify as a mineral, it must lie within certain parameters. It should be an inorganic solid, that is naturally occurring in nature (not synthesized), with an ordered internal structure and a definite chemical composition.
By definite chemical composition, geologists mean that the mineral must be have chemical constituents that have an unvarying chemical composition, or a chemical composition that oscillates withing a very limited and specific range.
An example is the mineral, halite. It has a chemical composition of one sodium atom and one chloride atom, represented as NaCl and is unchanging in this composition throughout nature.
<h3>Hope this helps</h3>