Answer: Weight only.
Explanation: Mass is a measure of the amount of matter in an object. Weight is a measure of the gravitational force exerted on the material in a gravitational field. Mass and weight are proportional to each other, with the acceleration due to gravity as the proportionality constant.
If a rock is transported from the moon to the earth, the mass is constant for the object but the weight will depends on the locations of the object. The gravitational acceleration would change because the radius and mass of the Moon is different from the Earth.
Thus, the object (rock) has <em>mass, m</em> both on the surface of the Earth and the surface of the Moon; but it will <em>weight</em> much less on the surface of the Moon as the Moon's surface gravity is 1/6 of the Earth.
Answer:
Option(a) is the correct answer to the given question .
Explanation:
The main objective of the angular momentum is evaluating however much the rotational movement as well as the angular velocity in the entity does have.The angular momentum is measured in terms of
.
- In the given question the skateboarder rides quickly up the bottom of a bowl-shaped surface and climb into the air.it means it is rotational movement also it is not touching anything so it is angular momentum.
- All the other option is incorrect because it is not follows the given scenario
The Newton’s law Nikolas would use to come up with this idea is the <span>Third law that states:
</span><span>When one body exerts a force on a second body, the second body simultaneously exerts a force equal in magnitude and opposite in direction on the first body.
</span>
So, in this case, let's name the first Body
A which is the skateboard and the second body
B which is <span>the compressed carbon dioxide in a fire extinguisher. Then, as shown in the figure below, according to the Third law:
</span>

<span>
</span>
Answer:
Explanation:
Intensity of unpolarized light = I(o)
Intensity of light after first polarization by polarizer A. = I(o)/2
Angle between A and B = 120 degree.
Intensity of light after second polarization = I Cos² θ
= I(o) /2 x cos²120 = I(o) /8 .
Angle between B and C is 70 degree
Intensity of light after third polarization =
I(o)/8 x Cos² 70 = 0.1156 x I (o) /8 =
Required ratio =.01445
In the system described above we will have four forces that is acting on the puck. These are the weight, the normal force, the frictional force, and the force applied by the player. To determine the force applied by the player, we need to calculate first for the frictional force which is equal to the product of the coefficient of friction and the normal force. We do as follows:
Summation of forces in the y-direction:
W = Fn
Fn = 1.70 N
Summation of force in the x-direction
F = Fr = 0.06Fn
F = 0.06 (1.70) = 0.102 N