The gravitational potential energy of the brick is 25.6 J
Explanation:
The gravitational potential energy of an object is the energy possessed by the object due to its position in a gravitational field.
Near the surface of a planet, the gravitational potential energy is given by

where
m is the mass of the object
g is the strength of the gravitational field
h is the height of the object relative to the ground
For the brick in this problem, we have:
m = 8 kg is its mass
g = 1.6 N/kg is the strenght of the gravitational field on the moon
h = 2 m is the height above the ground
Substituting, we find:

Learn more about potential energy:
brainly.com/question/1198647
brainly.com/question/10770261
#LearnwithBrainly
Answer:
The distance of separation is 
Explanation:
The mass of the each ball is 
The negative charge on each ball is 
Now we are told that the lower ball is restrained from moving this implies that the net force acting on it is zero
Hence the gravitational force acting on the lower ball is equivalent to the electrostatic force i.e

=> 
here k the the coulomb's constant with a value 
So
![0.01 * 9.8 = \frac{ 9*10^9 *[1*10^{-6} * 1*10^{-6}]}{d}](https://tex.z-dn.net/?f=0.01%20%2A%209.8%20%20%3D%20%20%5Cfrac%7B%209%2A10%5E9%20%2A%5B1%2A10%5E%7B-6%7D%20%2A%201%2A10%5E%7B-6%7D%5D%7D%7Bd%7D)

As Saba was wearing high heels they are long from the bottom so they sank however Sana was wearing snow boots which means they were flat and so she didn’t sink.
Answer:
solved
Explanation:
a) F_net = (F2 - F3)i - F1 j
b) |Fnet| = sqrt( (F2 - F3)^2 + F1^2)
= sqrt( (9- 5)^2 + 1^2)
= 4.123 N
c) θ = tan^-1( (Fnet_y/Fnet_x)
= tan^-1( -1/(9-5) )
= -14.036°
Answer:
Kinetic energy is given by:
K.E. = 0.5 m v²
Susan has mass, m = 25 kg
Velocity with which Susan moves is, v = 10 m/s
Hannah has mass, m' = 30 kg
Velocity with which Hannah moves is, v' = 8.5 m/s
<u>Kinetic energy of Susan:</u>
0.5 m v² = 0.5 × 25 kg × (10 m/s)² = 1250 J
<u>Kinetic energy of Hannah:</u>
0.5 m v'² = 0.5 × 30 kg × (8.5 m/s)² = 1083.75 J
Susan's kinetic energy is <u>1250 J </u>and Hannah's kinetic energy is <u>1083.75 J</u>.
Since kinetic energy is dependent on mass and square of speed. Thus, speed has a greater effect than mass. As it is evident from the above example. Susan has greater kinetic energy due to higher speed than Hannah.