Answer:
<h2>
187,500N/m</h2>
Explanation:
From the question, the kinectic energy of the train will be equal to the energy stored in the spring.
Kinetic energy = 1/2 mv² and energy stored in a spring E = 1/2 ke².
Equating both we will have;
1/2 mv² = 1/2ke²
mv² = ke²
m is the mass of the train
v is the velocity of then train
k is the spring constant
e is the extension caused by the spring.
Given m = 30000kg, v = 4 m/s, e = 4 - 2.4 = 1.6m
Substituting this values into the formula will give;
30000*4² = k*1.6²

The value of the spring constant is 187,500N/m
Answer:
The distance the ball moves up the incline before reversing its direction is 3.2653 m.
The total time required for the ball to return to the child’s hand is 3.2654 s.
Explanation:
When the girl is moving up:
The final velocity (v) = 0 m/s
Initial velocity (u) = 4 m/s
a = -0.25g = -0.25*9.8 = -2.45 m/s². (Negative because it is in opposite of the velocity and also it deaccelerates while going up).
Let time be t to reach the top.
Using
v = u + a×t
0 = 4 - 2.45*t
t = 1.6327 s
Since, this is the same time the ball will come back. So,
<u>Total time to go and come back = 2* 1.6327 = 3.2654 s
</u>
To find the distance, using:
v² = u² + 2×a×s
0² = 4² + 2×(-2.45)×s
s = 3.2653 m
<u>Thus, the distance the ball moves up the incline before reversing its direction is 3.2653 m.</u>
Answer:

Explanation:
F₁ = Force on one side of the jack
A₁ = Area of cross-section of one side of the jack
F₂ = Force on second side of the jack
A₂ = Area of cross-section of second side of the jack = 2 A₁
Using pascal's law




Answer:
the number of additional car lengths approximately it takes the sleepy driver to stop compared to the alert driver is 15
Explanation:
Given that;
speed of car V = 120 km/h = 33.3333 m/s
Reaction time of an alert driver = 0.8 sec
Reaction time of an alert driver = 3 sec
extra time taken by sleepy driver over an alert driver = 3 - 0.8 = 2.2 sec
now, extra distance that car will travel in case of sleepy driver will be'
S_d = V × 2.2 sec
S_d = 33.3333 m/s × 2.2 sec
S_d = 73.3333 m
hence, number of car of additional car length n will be;
n = S_n / car length
n = 73.3333 m / 5m
n = 14.666 ≈ 15
Therefore, the number of additional car lengths approximately it takes the sleepy driver to stop compared to the alert driver is 15