The widely accepted hypothesis before that turned out wrong was the Earth-Centered theory or the Geocentric Theory. This was proposed by the philosopher Ptolemy. He came about to this hypothesis from hi observation that from the Earth's perspective, the celestial bodies like the Sun, stars and the moon, look like they rotate around the Earth each day and night. However, this was disproved by Galileo Galelei by his Heliocentric Theory. He observed through the telescope that the Venus also changes phases like the moon. However, he deduced that this is not possible from the positions of the Venus, Earth, Moon and Sun.
Answer:

(we need the mass of the astronaut A)
Explanation:
We can solve this by using the conservation law of the linear momentum P. First we need to represent every mass as a particle. Also we can simplify this system of particles by considering only the astronaut A with an initial speed
of 0 m/s and a mass
and the IMAX camera with an initial speed
of 7.5 m/s and a mass
of 15.0 kg.
The law of conservation says that the linear momentum P (the sum of the products between all masses and its speeds) is constant in time. The equation for this is:

By the law of conservation we know that
For
(final linear momentum) we need to treat the collision as a plastic one (the two particles stick together after the encounter).
So:


Answer:
Snail's speed =
= 0.0125m/s
Turtle's speed =
= 0.1375m/s
Explanation:
Let the snail's speed be x m/s
The turtle's speed then is 11x m/s
Speed = Distance ÷ Time
Since speed and distance are directly proportional;
The ratio of the distances snail and turtle cover before they meet is x:11x respectively.
Simplified, the ratio of snail distance : turtle distance = 1:11
So snail covers a distance of
× 360 = 30m
And turtle covers a distance of
× 360 = 330m
The time each took before they met is 40 × 60 = 2400 seconds
Snail's speed =
= 0.0125m/s
Turtle's speed =
= 0.1375m/s
Answer: M.A = 3
Explanation:
A ramp is an example of an inclined plain. Where the
Height H = 1.5 m
Length L = 4.5 m
Mechanical advantage of a machine is the ratio of the load to effort. While mechanical advantage M.A of an inclined plain is the ratio of the length of the plain to the height of the plain.
M.A = L/H
Substitute the values of L and H into the formula
M.A = 4.5/1.5 = 3
The mechanical advantage of the ramp is 3