First we need to identify if the data is qualitative or quantitative.
The data is average number of people living in the homes.
Qualitative data as its name indicates is an attribute or characteristic. It can not be measured e.g color. Quantitative data is such a data which can be counted or measured.
Since the average number of people can be counted and measured, the data is Quantitative.
In an observational study the individuals are observed. In the given case, Kira did not observed the individuals to gather the data, rather she used an Online resource to gather the data.
Therefore, the correct answer will be:
Kira used published data that is quantitative.
Answer:
a.0.8664
b. 0.23753
c. 0.15866
Step-by-step explanation:
The comptroller takes a random sample of 36 of the account balances and calculates the standard deviation to be N42.00. If the actual mean (1) of the account balances is N175.00, what is the probability that the sample mean would be between
a. N164.50 and N185.50?
b. greater than N180.00?
c. less than N168.00?
We solve the above question using z score formula
z = (x-μ)/σ/√n where
x is the raw score,
μ is the population mean = N175
σ is the population standard deviation = N42
n is random number of sample = 36
a. Between N164.50 and N185.50?
For x = N 164.50
z = 164.50 - 175/42 /√36
z = -1.5
Probability value from Z-Table:
P(x = 164.50) = 0.066807
For x = N185.50
z = 185.50 - 175/42 /√36
z =1.5
Probability value from Z-Table:
P(x=185.50) = 0.93319
Hence:
P(x = 185.50) - P(x =164.50)
= 0.93319 - 0.066807
= 0.866383
Approximately = 0.8664
b. greater than N180.00?
x > N 180
Hence:
z = 180 - 175/42 /√36
z = 5/42/6
z = 5/7
= 0.71429
Probability value from Z-Table:
P(x<180) = 0.76247
P(x>180) = 1 - P(x<180) = 0.23753
c. less than N168.00?
x < N168.
z = 168 - 175/42 /√36
z = -7/42/6
z = -7/7
z = -1
Probability value from Z-Table:
P(x<168) = 0.15866
Answer:
76% of X= 9.12. X= 12 gram. Therefore weight of the sample is 12 gram.
Step-by-step explanation:
i hope it's help you