3.5x + 4y = 45
x=6, y= 6 is the most likely answer.
Non whole number variations would be:
x=8, y=4.25
x=4, y=7.75
Answer:
see explanation
Step-by-step explanation:
To determine which ordered pairs are solutions to the equation
Substitute the x and y values into the left side of the equation and if equal to the right side then they are a solution.
(- 1, - 6)
3(- 1) - 4(- 6) = - 3 + 24 = 21 = right side ← thus a solution
(- 3, 3)
3(- 3) - 4(3) = - 9 - 12 = - 21 ≠ 21 ← not a solution
(11, 3)
3(11) - 4(3) = 33 - 12 = 21 = right side ← thus a solution
(7, 0)
3(7) - 4(0) = 21 - 0 = 21 = right side ← thus a solution
The ordered pairs (- 1, - 6), (11, 3), (7, 0) are solutions to the equation
F(x) is continuous for all x.
Pick a point and show that f(x) is either negative or positive. Pick another point and show that f(x) is negative, if positive, or positive, if negative.
At x = 30, f(30) - 1000 = 900 + 10sin(30) - 1000 ≤ 0
Now, show at another point f(x) - 1000 is positive, and hence, there would be root between 30 and such point.
Let's pick 40.
At x = 40, f(40) - 1000 = 1600 + 10sin(40) - 1000 ≥ 0
Since f(x) - 1000 is continuous, there lies a root between 30 and 40, and hence, 30 ≤ c ≤ 40
Answer: 0.9332.
Step-by-step explanation:
Claim : College Algebra final exam score of engineering majors equal to 88.
Given that : The test statistic is z equals to 1.50.
To find the p-value (Probability value), we use standard normal distribution table, and search the p-value corresponds to the z-score.
In a Standard Normal Distribution Table below, the p-value corresponds z equals 1.5 is 0.9332.
Hence, the p-value is 0.9332.
Answer: The average number of hours she danced per day is 1.9 hours (rounded to the nearest tenth)
Step-by-step explanation: We start by calculating how many hours she danced all together which can be derived as follows;
Summation = 3 +2 +2 + 1 + 1.5 + 2 = 11.5
The number of days she danced which is the observed data is 6 days (she did not dance at all on Wednesday).
The average (or mean) hours she danced each day can be calculated as
Average = ∑x ÷ x
Where ∑x is the summation of all data and x is number of observed data
Average = (3+2+2+1+1.5+2) ÷ 6
Average = 11.5 ÷ 6
Average = 1.9166
Approximately, average hours danced is 1.9 hours (to the nearest tenth)