For nuclear reactions, we determine the energy dissipated from the process from the Theory of relativity wherein energy is equal to the mass defect times the speed of light. We calculate as follows:
E = mc^2 = 0.187456 (3x10^8)^2 = 1.687x10^16 J
Hope this answers the question.
This type of listening response is called back-channel signal. This allows the speaker to know that the listener is attentive or willing to engage a conversation between them. It is shown through short utterances, facial expressions, head nods and others.
Answer:
Intensity of beam 18 feet below the surface is about 0.02%
Explanation:
Using Lambert's law
Let dI / dt = kI, where k is a proportionality constant, I is intensity of incident light and t is thickness of the medium
then dI / I = kdt
taking log,
ln(I) = kt + ln C
I = Ce^kt
t=0=>I=I(0)=>C=I(0)
I = I(0)e^kt
t=3 & I=0.25I(0)=>0.25=e^3k
k = ln(0.25)/3
k = -1.386/3
k = -0.4621
I = I(0)e^(-0.4621t)
I(18) = I(0)e^(-0.4621*18)
I(18) = 0.00024413I(0)
Intensity of beam 18 feet below the surface is about 0.2%
<em>12,25 km/h</em>
<em>≈ 3,4 m/s </em>
<em>v = d/t</em>
<em>= 12250m/h</em>
<em>= 12,25km/h</em>
<em>or</em>
<em>v = d/t</em>
<em>= 12250m/h</em>
<em>1h = 60m×60s = 3600s</em>
<em>= 12250m/3600s</em>
<em>≈ 3,4 m/s </em>
Answer:
a) One
Explanation:
In a uniform circular motion there must be a force acting to keep it in the circular track. This force can either be centripetal or a centrifugal force.
According to the Newton's first law of motion a particle continues to be in state of rest or in uniform motion until acted upon by an external force.
Here the term uniform motion need to be understood which refers to the uniform velocity of the particle in accordance to the vector laws.