answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GalinKa [24]
1 year ago
5

What determines whether the equilibrium temperature of a mixture of two amounts of water will be closer to the initially cooler

or warmer water?
Physics
1 answer:
larisa [96]1 year ago
6 0

Answer:

Explanation:

It is determined by the amount of cold or hot water in the mixture to know if it will be closer to been hot or cold.

You might be interested in
A man stands on his balcony, 130 feet above the ground. He looks at the ground, with his sight line forming an angle of 70° with
jenyasd209 [6]

Answer:

d =  380 feet

Explanation:

Height of man = perpendicular= 130 feet

Angle of depression = ∅ = 70 °

distance to bus stop from man = hypotenuse = d = 130 sec∅

As sec ∅ = 1 / cos∅

so d = 130 sec∅    or d = 130 / cos∅

d = 130 / cos(70°)

d =  380 feet

8 0
2 years ago
An aluminum "12 gauge" wire has a diameter d of 0.205 centimeters. The resistivity ρ of aluminum is 2.75×10−8 ohm-meters. The el
Tresset [83]

Complete Question

An aluminum "12 gauge" wire has a diameter d of 0.205 centimeters. The resistivity ρ of aluminum is 2.75×10−8 ohm-meters. The electric field in the wire changes with time as E(t)=0.0004t2−0.0001t+0.0004 newtons per coulomb, where time is measured in seconds.

I = 1.2 A at time 5 secs.

Find the charge Q passing through a cross-section of the conductor between time 0 seconds and time 5 seconds.

Answer:

The charge is  Q =2.094 C

Explanation:

From the question we are told that

    The diameter of the wire is  d =  0.205cm = 0.00205 \ m

     The radius of  the wire is  r =  \frac{0.00205}{2} = 0.001025  \ m

     The resistivity of aluminum is 2.75*10^{-8} \ ohm-meters.

       The electric field change is mathematically defied as

         E (t) =  0.0004t^2 - 0.0001 +0.0004

     

Generally the charge is  mathematically represented as

       Q = \int\limits^{t}_{0} {\frac{A}{\rho} E(t) } \, dt

Where A is the area which is mathematically represented as

       A =  \pi r^2 =  (3.142 * (0.001025^2)) = 3.30*10^{-6} \ m^2

 So

       \frac{A}{\rho} =  \frac{3.3 *10^{-6}}{2.75 *10^{-8}} =  120.03 \ m / \Omega

Therefore

      Q = 120 \int\limits^{t}_{0} { E(t) } \, dt

substituting values

      Q = 120 \int\limits^{t}_{0} { [ 0.0004t^2 - 0.0001t +0.0004] } \, dt

     Q = 120 [ \frac{0.0004t^3 }{3} - \frac{0.0001 t^2}{2} +0.0004t] }  \left | t} \atop {0}} \right.

From the question we are told that t =  5 sec

           Q = 120 [ \frac{0.0004t^3 }{3} - \frac{0.0001 t^2}{2} +0.0004t] }  \left | 5} \atop {0}} \right.

          Q = 120 [ \frac{0.0004(5)^3 }{3} - \frac{0.0001 (5)^2}{2} +0.0004(5)] }

         Q =2.094 C

     

5 0
2 years ago
A 50.-kilogram rock rolls off the edge of a cliff. if it is traveling at a speed of 24.2 m/s when it hits the ground, what is th
ElenaW [278]

The correct answer to the question is : 29.88 m.

EXPLANATION :

As per the question, the mass of the rock m = 50 Kg.

The rock is rolling off the edges of the cliff.

The final velocity of the rock when it hits the ground v = 24 .2 m/s.

Let the height of the cliff is h.

The potential energy gained by the rock at the top of the cliff = mgh.

Here, g is known as acceleration due to gravity, and g = 9.8\ m/s^2

When the rock rolls off the edge of the cliff, the potential energy is converted into kinetic energy.

When the rock hits the ground, whole of its potential energy is converted into its kinetic energy.

The kinetic energy of the rock when it touches the ground is given as -

                Kinetic energy K.E = \frac{1}{2}mv^2.

From above we know that -

   Kinetic energy at the bottom of the cliff = potential energy at a height h

                 \frac{1}{2}mv^2=\ mgh

                ⇒ v^2=\ 2gh

                ⇒ h=\ \frac{v^2}{2g}

                ⇒ h=\ \frac{(24.2)^2}{2\times 9.8}

                ⇒ h=\ 29.88\ m

Hence, the height of the cliff is 29.88 m

             


5 0
1 year ago
When a resistor with resistance R is connected to a 1.50-V flashlight battery, the resistor consumes 0.0625 W of electrical powe
ch4aika [34]

Answer:

4.41 W

Explanation:

P = IV, V = IR

P = V² / R

Given that P = 0.0625 when V = 1.50:

0.0625 = (1.50)² / R

R = 36

So the resistor is 36Ω.

When the voltage is 12.6, the power consumption is:

P = (12.6)² / 36

P = 4.41

So the power consumption is 4.41 W.

5 0
2 years ago
A tennis player hits a ball 2.0 m above the ground. The ball leaves his racquet with a speed of 20 m/s at an angle 5.0 ∘ above t
ipn [44]

Answer:

ball clears the net

Explanation:

v_{o} = initial speed of launch of the ball = 20 ms^{-1}

\theta = angle of launch = 5 deg

Consider the motion of the ball along the horizontal direction

v_{ox} = initial velocity = v_{o} Cos\theta = 20 Cos5 = 19.92 ms^{-1}

t = time of travel

X = horizontal displacement of the ball to reach the net = 7 m

Since there is no acceleration along the horizontal direction, we have

X = v_{ox} t \\7 = v_{ox} t\\t = \frac{7}{v_{ox}}       Eq-1

Consider the motion of the ball along the vertical direction

v_{oy} = initial velocity = v_{o} Sin\theta = 20 Sin5 = 1.74 ms^{-1}

t = time of travel

Y_{o} = Initial position of the ball at the time of launch = 2 m

Y = Final position of the ball at time "t"

a_{y} = acceleration in down direction = - 9.8 ms⁻²

Along the vertical direction , position at any time is given as

Y = Y_{o} + v_{oy} t + (0.5) a_{y} t^{2}\\Y = 2 + (20 Sin5) (\frac{7}{20 Cos5}) + (0.5) (- 9.8) (\frac{7}{20 Cos5})^{2}\\Y = 2.00758 m\\

Since Y > 1 m

hence the ball clears the net

7 0
2 years ago
Other questions:
  • Question 5 of 5: Someone texting or talking spans an average of 27 seconds after they put the phone down are still thinking abou
    15·1 answer
  • What is the equation describing the motion of a mass on the end of a spring which is stretched 8.8 cm from equilibrium and then
    15·2 answers
  • Two ropes have equal length and are stretched the same way. The speed of a pulse on rope 1 is 1.4 times the speed on rope 2. Par
    11·1 answer
  • An object executes simple harmonic motion with an amplitude A. (Use any variable or symbol stated above as necessary.) (a) At wh
    9·1 answer
  • A charge of 5.67 x 10-18 C is placed 3.5 x 10 m away from another charge of - 3.79 x 10 "C
    6·1 answer
  • An ideal gas trapped inside a thermally isolated cylinder expands slowly by pushing back against a piston. The temperature of th
    11·1 answer
  • Samantha wants to study circus performance when she gets to college. She has mastered many physical skills already, but she keep
    13·2 answers
  • What is the change in entropy of helium gas with total mass 0.135 kg at the normal boiling point of helium when it all condenses
    13·1 answer
  • A nonrelativistic electron is accelerated from rest through a potential difference. After acceleration the electron has a de Bro
    14·1 answer
  • A machine produces photo detectors in pairs. Tests show that the first photo detector is acceptable with probability 3/5. When t
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!