Answer:
O FX will be greater than FY
Explanation:
<em>Surface tension</em> can be defined as the force required to stretch one film of a given fase (usually with liquids).
This required force is proportional to the liquid's surface tension. This means that the higher the surface tension, the higher the required force to stretch it is.
Did you intend to write [PdCl4]^-2 instead of PdCl2-4? If so, then:
<span>Cathode: [PdCl4]^-2(aq) + 2e- ======⇒ Pd(s) + 4Cl-(aq) </span>
<span>Anode: Cd(s) ==⇒ Cd+2(aq) + 2e-</span>
Answer:
Option (A) saturated and is at equilibrium with the solid KCl
Explanation:
A saturated solution is a solution which can not dissolve more solute in the solution.
From the question given above, we can see that the solution is saturated as it can not further dissolve any more KCl as some KCl is still visible in the flask.
Equilibrium is attained in a chemical reaction when there is no observable change in the reaction system with time. Now, observing the question given we can see that there is no change in flask as some KCl is still visible even after thorough shaking. This simply implies that the solution is in equilibrium with the KCl solid as no further dissolution occurs.
Answer:
1.73 atm
Explanation:
Given data:
Initial volume of helium = 5.00 L
Final volume of helium = 12.0 L
Final pressure = 0.720 atm
Initial pressure = ?
Solution:
"The volume of given amount of gas is inversely proportional to its pressure by keeping the temperature and number of moles constant"
Mathematical expression:
P₁V₁ = P₂V₂
P₁ = Initial pressure
V₁ = initial volume
P₂ = final pressure
V₂ = final volume
Now we will put the values in formula,
P₁V₁ = P₂V₂
P₁ × 5.00 L = 0.720 atm × 12.0 L
P₁ = 8.64 atm. L/5 L
P₁ = 1.73 atm
Answer:
The following subsections explain the explanation according to the particular circumstance.
Explanation:
- The boiling point seems to be the temperature beyond which the working fluid as well as the boiling phase would be at a predetermined pressure or voltage at equilibrium among one another and.
- The vapor or boiling temperature of 1,1 difluoroethane seems to be -25oC at 1 atm, although as a gas it can remain at a higher temperature around -24oC.