The most likely explanation for this observation is C. his car has turned on more pistons to provide the extra energy needed to accelerate.
When cruising, hybrid cars are able to employ electrical energy to drive the car. Moreover, even if a vehicle is not a hybrid, a greater amount of fuel is consumed when one accelerates because the vehicle has to generate a force larger than the force of air resistance in order for it to accelerate. This increased demand of force reduces the vehicle's fuel economy.
Answer: a) 
b) 
Explanation:
If percentage are given then we are taking total mass is 100 grams.
So, the mass of each element is equal to the percentage given.
a) Mass of Ba= 66.06 g
Mass of Cl = 34.0 g
Step 1 : convert given masses into moles.
Moles of Ba =
Moles of Cl = \frac{\text{ given mass of Cl}}{\text{ molar mass of Cl}}= \frac{34g}{35.5g/mole}=0.96moles[/tex]
Step 2 : For the mole ratio, divide each value of moles by the smallest number of moles calculated.
For Ba =
For O =
The ratio of Ba: Cl= 1:2
Hence the empirical formula is 
b) Mass of Bi= 80.38 g
Mass of O= 18.46 g
Mass of H = 1.16 g
Step 1 : convert given masses into moles.
Moles of Bi =
Moles of O=
Moles of H=
Step 2 : For the mole ratio, divide each value of moles by the smallest number of moles calculated.
For Bi=
For O =
For H=
The ratio of Bi: O: H= 1:3: 3
Hence the empirical formula is 
The balanced equation for the above reaction is
HBr + KOH ---> KBr + H₂O
stoichiometry of HBr to KOH is 1:1
HBr is a strong acid and KOH is a strong base and they both completely dissociate.
The number of HBr moles present - 0.25 M / 1000 mL/L x 52.0 mL = 0.013 mol
The number of KOH moles added - 0.50 M / 1000 mL/L x 26.0 mL = 0.013 mol
the number of H⁺ ions = number of OH⁻ ions
therefore complete neutralisation occurs.
Therefore solution is neutral. At 25 °C, when the solution is neutral, pH = 7.
Then pH of solution is 7
Answer: 0.0164 molar concentration of hydrochloric acid in the resulting solution.
Explanation:
1) Molarity of 0.250 L HCl solution : 0.0328 M

Moles of HCl in 0.250 L solution = 0.0082 moles
2) Molarity of 0.100 L NaOH solution : 0.0245 M

Moles of NaOH in 0.100 L solution = 0.00245 moles
3) Concentration of hydrochloric acid in the resulting solution.
0.00245 moles of NaOH will neutralize 0.00245 moles of HCl out of 0.0082 moles of HCl.
Now the new volume of the solution = 0.100 L +0.250 L = 0.350 L
Moles of HCl left un-neutralized = 0.0082 moles - 0.00245 moles = 0.00575 moles

Molarity of HCl left un-neutralized :
0.0164 molar concentration of hydrochloric acid in the resulting solution.
Answer:
We can seprate oil and water by the process of seprating funnel