Its total charge is zero but for the elements:
Sn===> Sn4+ positive
Cl===> Cl- negative
C. The salt bridge maintains the flows of ions and allows electrons to move from the anode to the cathode.
<span>Well... first, let's recognize that the chemical formula for chlorodifluoromethane is CHClF2. Count out how many valence electrons there are. C = 4, H = 1, Cl = 7, F (X2) = 14. Total is 26. Let's put C as the central atom, and put the other elements surrounding it. Draw a pair of electrons beach each element and the central atom. Then fill the halogen elements with 3 pairs of electrons each to fill their octets. Count out how many dots you have. There should be 26, making this the correct lewis structure!
Remember, hydrogen doesn't have a full octet, only a maximum of two electrons.</span>
Limiting reactant : O₂
Mass of N₂O₄ produced = 95.83 g
<h3>Further explanation</h3>
Given
50g nitrous oxide
50g oxygen
Reaction
2N20 + 302 - 2N204
Required
Limiting reactant
mass of N204 produced
Solution
mol N₂O :

mol O₂ :

2N₂O+3O₂⇒ 2N₂O₄
ICE method
1.136 1.5625
1.0416 1.5625 1.0416
0.0944 0 1.0416
Limiting reactant : Oxygen-O₂
Mass N₂O₄(MW=92 g/mol) :

Answer:
3.4 × 10²³ molecules of CBr₄
Explanation:
Given data:
Mass of CBr₄ = 189 g
Number of molecules = ?
Solution:
First of all we will calculate the number of moles.
Number of moles = mass / molar mass
Number of moles = 189 g/ 331.63 g/mol
Number of moles = 0.6 mol
Now the given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
For example,
18 g of water = 1 mole = 6.022 × 10²³ molecules of water
Foe 0.6 moles of CBr₄:
0.6 mol × 6.022 × 10²³ molecules of CBr₄ / 1 mol
3.4 × 10²³ molecules of CBr₄