Answer:
The pH of 0.1 M BH⁺ClO₄⁻ solution is <u>5.44</u>
Explanation:
Given: The base dissociation constant:
= 1 × 10⁻⁴, Concentration of salt: BH⁺ClO₄⁻ = 0.1 M
Also, water dissociation constant:
= 1 × 10⁻¹⁴
<em><u>The acid dissociation constant </u></em>(
)<em><u> for the weak acid (BH⁺) can be calculated by the equation:</u></em>

<em><u>Now, the acid dissociation reaction for the weak acid (BH⁺) and the initial concentration and concentration at equilibrium is given as:</u></em>
Reaction involved: BH⁺ + H₂O ⇌ B + H₃O+
Initial: 0.1 M x x
Change: -x +x +x
Equilibrium: 0.1 - x x x
<u>The acid dissociation constant: </u>![K_{a} = \frac{\left [B \right ] \left [H_{3}O^{+}\right ]}{\left [BH^{+} \right ]} = \frac{(x)(x)}{(0.1 - x)} = \frac{x^{2}}{0.1 - x}](https://tex.z-dn.net/?f=K_%7Ba%7D%20%3D%20%5Cfrac%7B%5Cleft%20%5BB%20%5Cright%20%5D%20%5Cleft%20%5BH_%7B3%7DO%5E%7B%2B%7D%5Cright%20%5D%7D%7B%5Cleft%20%5BBH%5E%7B%2B%7D%20%5Cright%20%5D%7D%20%3D%20%5Cfrac%7B%28x%29%28x%29%7D%7B%280.1%20-%20x%29%7D%20%3D%20%5Cfrac%7Bx%5E%7B2%7D%7D%7B0.1%20-%20x%7D)





<u>Therefore, the concentration of hydrogen ion: x = 3.6 × 10⁻⁶ M</u>
Now, pH = - ㏒ [H⁺] = - ㏒ (3.6 × 10⁻⁶ M) = 5.44
<u>Therefore, the pH of 0.1 M BH⁺ClO₄⁻ solution is 5.44</u>
Answer:
34.2 g is the mass of carbon dioxide gas one have in the container.
Explanation:
Moles of
:-
Mass = 49.8 g
Molar mass of oxygen gas = 32 g/mol
The formula for the calculation of moles is shown below:
Thus,

Since pressure and volume are constant, we can use the Avogadro's law as:-
Given ,
V₂ is twice the volume of V₁
V₂ = 2V₁
n₁ = ?
n₂ = 1.55625 mol
Using above equation as:
n₁ = 0.778125 moles
Moles of carbon dioxide = 0.778125 moles
Molar mass of
= 44.0 g/mol
Mass of
= Moles × Molar mass = 0.778125 × 44.0 g = 34.2 g
<u>34.2 g is the mass of carbon dioxide gas one have in the container.</u>
Following reactions are involved in present reaction
1) A<span>g+(aq) + Li(s) → Ag(s) + Li+(aq) </span><span>− 384.4kJ
2) </span><span>2Fe(s) + 2Na+(aq) → Fe2+(aq) + 2Na(s) + 392.3kJ
</span>3) <span>2K(s) + 2H2O(l) → 2KOH(aq) +H2(g) −393.1kJ
In above reaction, reaction 1 and 3 has negative value of </span>δh∘f, while reaction 2 has posiyive value of <span>δh∘f. As per the sign convention positive sign indicates that heat is given out during the reaction, while negative sign indicates heat is to be supplied for reaction to occur. In alternative words, product formed in reaction 2 is stable as compared to reactant. Hence, it is thermodynamically favorable. </span>
Answer:
1) 0.009 61 g C; 2) 0.008 00 mol C
Step-by-step explanation:
You know that you will need a balanced equation with masses, moles, and molar masses, so gather all the information in one place.
M_r: 12.01 44.01
C + ½O₂ ⟶ CO₂
m/g: 0.352
1) <em>Mass of C
</em>
Convert grams of CO₂ to grams of C
44.01 g CO₂ = 12.01 g C
Mass of C = 0.352 g CO₂ × 12.01 g C/44.01 g CO₂
Mass of C = 0.009 61 g C
2) <em>Moles of C
</em>
Convert mass of C to moles of C.
1 mol C = 12.01 g C
Moles of C = 0.00961 g C × (1 mol C/12.01 g C)
Moles of C = 0.008 00 mol C
All the carbon comes from Compound A, so there are 0.008 00 mol C in Compound A.
Oxidation number of an atom is the charge that atom would have if the compound is composed of ions. In neutral substances that contains atoms of one element the oxidation number of an atom is zero. Thus atoms in O2, Ni2, and aluminium all have oxidation number of zero.
In this case, Ni2, the oxidation number of Ni atom is zero,
for NiO4-, assuming oxidation number of Ni is x
(x ×1) + (-2 × 4) = -1
x = + 7
Therefore, the oxidation number goes from 0 to +7