Answer:
The P-H bonds are more polar than the N-H bonds.
Explanation:
Phosphine is a polar molecule with non-polar bonds. The phosphorus atom is bonded to three hydrogen atoms and the phosphorus atom has a lone pair of electrons. Since hydrogen and phosphorus are equal in electronegativity, it implies that they attract the shared pairs of electrons the same amount,hence bonding electrons are shared equally making the covalent bonds non-polar.
The lone pair of electrons on phosphorus causes the molecule to be asymmetrical with respect to charge distribution this is why the molecule is polar even though the are non-polar bonds in the molecule.
Looking at the values of electro negativity stated in the question, one can easily see that the difference in electro negativity between nitrogen and hydrogen is 0.9 while the difference in electro negativity between phosphorus and hydrogen is zero. It is clear that NH3 is naturally more polar than PH3 since each individual N-H bond in NH3 is a polar bond while the individual P-H bonds in PH3 are nonpolar.
Answer:
2.5 g of platinum
Explanation:
Recall that a catalyst is a specie added to a reaction system to increase the rate of reaction. A catalyst does not participate in the chemical reaction hence it remains unchanged at the end of the chemical reaction. A catalyst merely provides an alternative reaction pathway by lowering the activation energy of the reaction system. Hence a catalysed reaction usually proceeds faster with less energy requirement than the uncatalysed reaction.
Since the catalyst does not participate in the reactions and remains unchanged at the end of the reaction, the mass of platinum will remain the same (2.5g). The mass can only change if a specie participates in the chemical reaction. Hence the answer.
Hello!
To do this, use the molar mass. This is how much a mole of an atom weighs. A mole is 6.02214076×10²³ atoms.
Molar masses of:
Se: 78.96 g/mol
Cu: 63.546 g/mol
Ba: 137.327 g/mol
Now, the element with the highest molar mass will have the fewest atoms. This is because the element weighs more, so therefore for the same amount of mass, there will be less of the element needed to reach that mass.
Therefore, 10g of Ba would have the fewest number of atoms.
Hope this helps!
Answer:
The partial pressure of Ar is 356.04 mm Hg (= 0.4685 atm)
Explanation:
<u>Step 1:</u> Data given
A mixture of three gases has a total pressure of 1380 mm Hg (=1.81579 atm) at 298 K
Moles of CO2 = 1.27 moles
Moles of CO = 3.04 moles
Moles of Ar = 1.50 moles
<u>Step 2:</u> Calculate total number of moles
Total number of moles = n(CO2)+ n(CO)+ n(Ar) = 1.27 mol+ 3.04 mol+ 1.50 mol = 5.81 moles
<u>Step 3:</u> Calculate mol fraction Ar
Mol fraction Ar = 1.50 mol/5.81 mol = 0.258
<u>Step 4</u>: Calculate partial pressure
1380 mm Hg * 0.258 moles Ar = 356.04 mm Hg = 0.4685 atm
The partial pressure of Ar is 356.04 mm Hg (= 0.4685 atm)
There can be three possible answers to this question: the amount of moles of SO₂ gas needed to react with 6.41 mol H₂S, and the amount of S and H₂O gas produced.
Amount of SO₂:
6.41 mol H₂S (1 mol SO₂/2 mol 2 mol H₂S) = <em>3.205 moles SO₂ gas</em>
Amount of S:
6.41 mol H₂S (3 mol S/2 mol 2 mol H₂S) =<em> 9.615 moles S solid</em>
Amount of H₂O:
6.41 mol H₂S (2 mol H₂O/2 mol 2 mol H₂S) = <em>6.41 moles H₂O gas</em>