The two substances have different densities. Density can be affected by the temperature of a substance. Since they have to same volume but weigh differently, they have different densities. Remember, density = mass/volume
Answer:
It take 3.5 *10² min
Explanation:
Step 1: Data given
Mass of the nickel = 29.6 grams
4.7A
Step 2: The balanced equation
Ni2+ (aq- +2e- → Ni(s)
Step 3: Calculate time
W = (ItA)/(n*F)
⇒ W = weight of plated metal in grams = 29.6
⇒ I = current in coulombs per second.
= 4.7
⇒ t = time in seconds.
⇒ A = atomic weight of the metal in grams per mole. = 58.69
⇒ n = valence of dissolved metal in solution in equivalents per mole. = 2
⇒ F = Faraday's constant in coulombs per equivalent. F = 96,485.309 coulombs/equivalent.
29.6 = (4.7 * t * 58.69)/(2*96485309)
t = 20707 seconds
t =345 minutes = 3.5 * 10² min
It take 3.5 *10² min
Answer: Increases.
Explanation: As the temperature of a liquid or solid increases its vapor pressure also increases. Conversely, vapor pressure decreases as the temperature decreases.

given E = 9.4145E-25
h = 6.626E-34
c = 2.998E8
sub values into the equation above, and solve for wavelength.
You will get 0.211m
Answer is: molality od sodium chloride is 2,55 mol/kg.
V(solution) = 100 ml.
m(solution) = d(solution) · V(solution).
m(solution) = 1,10 g/ml · 100 ml.
m(solution) = 110 g.
ω(NaCl) = 13,0% = 0,13.
m(NaCl) = ω(NaCl) · m(solution).
m(NaCl) = 0,13 · 110 g.
m(NaCl) = 14,3 g.
n(NaCl) = m(NaCl) ÷ M(NaCl).
n(NaCl) = 14,3 g ÷ 58,5 g/mol.
n(NaCl) = 0,244 mol.
m(H₂O) = 110 g - 14,3 g.
m(H₂O) = 95,7 g = 0,0957 kg.
b(NaCl) = n(NaCl) ÷ m(H₂O).
b(NaCl) = 0,244 mol ÷ 0,0957 kg.
b(NaCl) = 2,55 mol/kg.